COMPLETE 2-TRANSNORMAL HYPERSURFACES IN A KAEHLER MANIFOLD OF NEGATIVE CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

By

Fumiko OHTSUKA

§1. Introduction

The idea of constant width has been developed in a somewhat different spirit, as a topic in differential geometry, and the concept of "transnormality" has been introduced as the generalized one of constant width in a Riemannian manifold.

Let M be a connected complete hypersurface of a connected complete Riemannian manifold \overline{M} . For each $x \in M$, there exists, up to parametrization, a unique geodesic τ_x of \overline{M} which intersects M orthogonally at x. M is called a transnormal hypersurface of \overline{M} if, for each pair $x, y \in M$, the relation $y \in \tau_x$ implies that $\tau_x = \tau_y$. For a transnormal hypersurface M, we define an equivalence relation \sim on M as follows; for $x, y \in M$, $x \sim y$ means that $y \in \tau_x$. Then we can consider the quotient space $\hat{M} = M/\sim$ with the quotient topology with respect to this relation. We call M an *r*-transnormal hypersurface if the natural projection of M onto \hat{M} is an r-fold covering map.

Topological structures of transnormal submanifolds are full of interest and have been investigated from various angles (for example, see [3]). On the other hand, differential geometric structures of 2-transnormal hypersurfaces in a space form have been given in [2] and [4].

Recentry, the author has studied in [5] differential geometric structures of compact 2-transnormal hypersurfaces in a complex space form. The purpose of this paper is to generalize the result in [5] to the case where 2-transnormal hypersurfaces are complete. Namely we shall prove that 2-transnormal hypersurfaces in a Kaehler manifold of negative constant holomorphic sectional curvature are tubes over some submanifolds or geodesic hyperspheres if any principal curvature is constant.

§ 2. Preliminalies

First we shall review the definition of the function L_p on M for some point

Received August 22, 1986. Revised November 20, 1986.