ON COMPACTA WHICH ARE l-EQUIVALENT TO l^{n}

By
Akira Koyama and Toshinao Okada

1. Introduction.

All spaces considered in this paper are assumed to be metrizable. A compactum is a compact space. A continuum is a connected compactum, and a mapping is a continuous function. For a space X we denote by $C(X)$ the space of all real-valued mappings on X with the topology of uniform convergence. Then by Milutin's interesting work [8], we have known that for each pair of uncountable compacta X and $Y, C(X)$ is linearly isomorphic to $C(Y)$ (see [12] for the details and generalizations). On the other hand, for space X we denote by $C_{p}(X)$ the space of all real-valued mappings on X with the topology of pointwise convergence. Spaces X and Y are said to be l-equivalent [1] provided that $C_{p}(X)$ is linearly isomorphic to $C_{p}(Y)$, written $C_{p}(X) \cong C_{p}(Y)$. Recently, Pavlovskii [11] showed the following.
1.1. Theorem. (1) If locally compact spaces X and Y are l-equivalent, then for each non-empty open or closed set \tilde{X} of X, there exists a non-empty open set in \tilde{X} which can be embedded in Y. Therefore, $\operatorname{dim} X=\operatorname{dim} Y$ (see also [4] and [13]).
(2) Non-zero-dimensional compact polyhedra P and Q are l-equivalent if and only if $\operatorname{dim} P=\operatorname{dim} Q$.
(3) Let B be the Pontryagin's 2-dimensional continum with the property $\operatorname{dim}(B \times B)=3$. Then B is not l-equivalent to I^{2}, where I is the unit interval $[0,1]$.

Being motivated by Theorem 1.1 (2), readers may consider that for $n \geqq 1$, all n-dimensional compact ANR's are l-equivalent to I^{n}. However, by Theorem 1.1 (1) and [3, Theorem VI. (6.1)], we can easily see that for each $n \geqq 1$, there exists a collection of $2^{\times_{0}} n$-dimensional compact $A R^{\prime} s$ in R^{n+1} which are not l equivalent to each other. On the other hand, let X be a compactification of the half-open interval $[0,1)$ whose remainder is I^{n}. Then X is l-equivalent to I^{n}, although X is not even locally connected. Therefore it seems to be difficult to

Received April 10, 1986.

