GAPS BETWEEN COMPACTNESS DEGREE AND COMPACTNESS DEFICIENCY FOR TYCHONOFF SPACES

By

Takashi KIMURA

1. Introduction.

In this paper we assume that all spaces are Tychonoff. For a space X, dim X denotes the Čech-Lebesgue dimension of X (see [3]).

J. de Groot proved that a separable metrizable space X has a metrizable compactification αX with dim $(\alpha X \setminus X) \leq 0$ iff X is rim-compact (see [4]). A space X is *rim-compact* if each point of X has arbitrarily small neighborhoods with compact boundary. Modified the concept of rim-compactness, he defined the *compactness degree* of a space X, cmp X, inductively, as follows.

A space X satisfies cmp X = -1 iff X is compact. If n is a non-negative integer, then cmp $X \le n$ means that each point of X has arbitrarily small neighborhoods U with cmp Bd $U \le n-1$. We put cmp X = n if cmp $X \le n$ and cmp $X \le n-1$. If there is no integer n for which cmp $X \le n$, then we put cmp $X = \infty$.

By the compactness deficiency of a Tychonoff space (resp. a separable metrizable space) X we mean the least integer n such that X has a compactification (resp. a metrizable compactification) αX with dim $(\alpha X \setminus X) = n$. We denote this integer by def^{*} X (resp. def X). We allow n to be ∞ .

Thus, with this terminology, J. de Groot's result above asserts that $\operatorname{cmp} X \leq 0$ iff def $X \leq 0$ for every separable metrizable space X. The general problem whether $\operatorname{cmp} X \leq n$ iff def $X \leq n$ for arbitrary separable metrizable space X has been known as J. de Groot's conjecture, and was unsolved for a long time.

However, in 1982 R. Pol [7] constructed a separable metrizable space X such that $\operatorname{cmp} X=1$ and def X=2. In the class of separable metrizable spaces, another example X with the property that $\operatorname{cmp} X\neq \operatorname{def} X$ seems to be still unknown but Pol's example above.

On the other hand, in the class of Tychonoff spaces, M. G. Charalambous [1] has already constructed a space X such that $\operatorname{cmp} X=0$ and $\operatorname{def}^* X=n$ for each $n=1, 2, \dots, \infty$. J. van Mill [6] has constructed a Lindelöf space X such that $\operatorname{cmp} X=1$ and $\operatorname{def}^* X=\infty$.

In this paper we construct a countably compact space X such that $\operatorname{cmp} X = m$ and

Received September 17, 1985.