NON-NORMAL NUMBERS TO DIFFERENT BASES
 AND
 THEIR HAUSDORFF DIMENSION

By
Kenji Nagasaka

0. Introduction.

The notion of normal numbers was first introduced by Emile Borel [3] in 1909. He considered the decimal expansion of real numbers in the unit interval to the base r and assuming that every digit of their decimal expansions is independent and also takes all possible values $0,1, \cdots$ and r-1 with equal probability, he proved that almost all real numbers are normal to the base r in the sense of Lebesgue measure.

For a real number ω, we denote $\{\omega\}$ the fractional part of ω defined by

$$
\{\omega\}=\omega-[\omega],
$$

where [•] is the Gauss' symbol, so that $\{\omega\}$ is contained in the unit interval $\mathrm{I}_{0}=[0,1)$ for every real number ω. We consider the decimal expansion of $\{\omega\}$ to the base r :

$$
\begin{equation*}
\{\omega\}=\sum_{n=1}^{\infty} \frac{x_{n}(\omega)}{r^{n}}, \tag{1}
\end{equation*}
$$

where $x_{n}(\omega)$ is the n-th digit of development of $\{\omega\}$ and takes one of the values in $R=\{0,1, \cdots, r-1\}$. For an r-adic rational number, we agree to write a terminating expansion in the form (1) in which all digits from a certain point on are 0.

Thus every real number in I_{0} is uniquely expressed by (1) and an infinite sequence of integers $\left\{a_{n}\right\}_{n=1,2} \cdots$ taking one of the values in R can be corresponded to a unique real number a in I_{0} defined by

$$
a=\sum_{n=1}^{\infty} \frac{a_{n}}{r^{n}} .
$$

We call a real number ω to be simply normal to the base r if, for each j in R,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{A_{N}(j ; \omega)}{N}=\frac{1}{r}, \tag{2}
\end{equation*}
$$

