A NOTE ON SPAN UNDER REFINABLE MAPS

By

Akira Koyama

1. Introduction.

All spaces considered in this note are metric, and all maps are continuous functions. A compactum is a compact metric space. A continuum is a connected compactum. In [1], Ford and Rogers defined a map $r: X \rightarrow Y$ from a compactum X onto a compactum Y to be *refinable* if for each $\varepsilon > 0$, there is an ε -map $f: X \rightarrow Y$ from X onto Y whose distance from r is less than ε . Refinable maps are useful in continuum theory, and many properties in continuum theory are preserved by refinable maps. For example, decomposability [1], aposyndesis [2], property [k], irreducibility, hereditary indecomposability and being the pseudo-arc [6] (see for other properties [4] and [5]).

Lelek [8] defined the surjective span of a continuum X, $\sigma^*(X)$, (resp. the surjective semi-span, $\sigma_0^*(X)$) to be the least upper bound of all real numbers α with the following property; there exist a continuum C and maps $f_1, f_2: C \to X$ such that $f_1(C) = X = f_2(C)$ (resp. $f_1(C) = X$) and dist $(f_1(c), f_2(c)) \ge \alpha$ for every $c \in C$. The span $\sigma(X)$ and the semi-span $\sigma_0(X)$ of X are defined by the formulas;

 $\sigma(X) = \sup\{\sigma^*(A) \mid A \text{ is a subcontinuum of } X\},\$

 $\sigma_0(X) = \sup \{ \sigma_0^*(A) | A \text{ is a subcontinuum of } X \}.$

Recently, many authors have been investigating span theory and finding interesting properties. Concerning span and special classes of maps, the following problems are raised in the University of Houston Problem Book;

Problem 86. Do confluent maps of continua preserve span zero?

Problem 92. If M is a continuum with positive span such that each of its proper subcontinua has span zero, does every nondegenerate monotone continuous image of M have positive span?

Ingram, [3, Theorem 2], showed that monotone maps of continua preserve span zero.

In this note we will show that refinable maps of continua preserve surjective Received November 20, 1984.