M_{0}-SPACES ARE μ-SPACES

By

Munehiko Itō

1. Introduction. The μ-spaces were introduced by K. Nagami [N]. A space X is said to be a μ-space if X is embedded in the countable product of F_{σ}-metrizable paracompact spaces. The class of $M_{3}-\mu$-spaces is a harmonious class in dimension theory and is a subclass of hereditary M_{1}-spaces (see [M] and [T]). Especially every 0 -dimensional $M_{3}-\mu$-space has a σ-closure preserving clopen base. Heath and Junnila [HJ] called such a space an M_{0}-space. Then, what spaces are M_{3}-spaces to be μ-spaces? There was no result on this question yet. In this paper we shed some light on this question.

Throughout this paper all spaces are assumed to be regular T_{1} and all maps are assumed to be continuous. The letter N denotes the positive integers.

2. Results.

Theorem 2.1. Let X be an M_{3}-space with a peripherally compact σ-closure preserving quasi-base. Then X is embedded in the countable product of F_{σ}-metrizable M_{3}-spaces and is therefore a μ-space.

Proof. Let $\mathscr{B}=\cup\left\{\mathscr{B}_{n}: n \in N\right\}$ be a peripherally compact σ-closure preserving closed quasi-base of X. Let $n \in N$. To construct a space M_{n}, let us fix n. Let $V(x)=X-\cup\left\{B \in \mathscr{B}_{n}: x \notin B\right\}$ and $\hat{x}=\{y \in X: V(x)=V(y)\}$. Then by [J, Theorem 4.8], there exists a σ-discrete closed refinement $H=\cup\left\{H_{m}: m \in N\right\}$ of $\{\hat{x}: x \in X\}$. By [O, Lemma 3.2], there exist a metrizable space Z and a one-to-one onto map $f: X \rightarrow Z$ such that every $f\left(H_{m}\right)$ is a discrete closed family and $f\left(\mathscr{B}_{n}\right)$ is a closure preserving closed family. For $B \in \mathscr{B}_{n}$, there exists a map $\Psi^{\prime}{ }_{B}: f(B) \rightarrow I$ such that $\Psi^{\prime}{ }_{B}{ }^{1}(0)=$ $f(\partial B)$, because ∂B is compact, where ∂B denotes the boundary of B. Let $\Psi_{B}: X \rightarrow I$ such that

$$
\begin{aligned}
& \Psi_{B}(x)=\Psi^{\prime}{ }_{B^{\circ}} f(x) \text { if } x \in B ; \text { and } \\
& \Psi_{B}(x)=0 \text { if } x \notin B .
\end{aligned}
$$

[^0]
[^0]: Received June 11, 1983.
 This result was announced in "General Topology Synposium, Japan", December 1983.

