TSUKUBA J. MATH. Vol. 8 No. 1 (1984). 77-80

M_0 -SPACES ARE μ -SPACES

By

Munehiko Itō

1. Introduction. The μ -spaces were introduced by K. Nagami [N]. A space X is said to be a μ -space if X is embedded in the countable product of F_{σ} -metrizable paracompact spaces. The class of M_{3} - μ -spaces is a harmonious class in dimension theory and is a subclass of hereditary M_{1} -spaces (see [M] and [T]). Especially every 0-dimensional M_{3} - μ -space has a σ -closure preserving clopen base. Heath and Junnila [HJ] called such a space an M_{0} -space. Then, what spaces are M_{3} -spaces to be μ -spaces? There was no result on this question yet. In this paper we shed some light on this question.

Throughout this paper all spaces are assumed to be regular T_1 and all maps are assumed to be continuous. The letter N denotes the positive integers.

2. Results.

THEOREM 2.1. Let X be an M_3 -space with a peripherally compact σ -closure preserving quasi-base. Then X is embedded in the countable product of F_{σ} -metrizable M_3 -spaces and is therefore a μ -space.

PROOF. Let $\mathcal{B} = \bigcup \{\mathcal{B}_n : n \in N\}$ be a peripherally compact σ -closure preserving closed quasi-base of X. Let $n \in N$. To construct a space M_n , let us fix n. Let $V(x) = X - \bigcup \{B \in \mathcal{B}_n : x \notin B\}$ and $\hat{x} = \{y \in X : V(x) = V(y)\}$. Then by [J, Theorem 4.8], there exists a σ -discrete closed refinement $H = \bigcup \{H_m : m \in N\}$ of $\{\hat{x} : x \in X\}$. By [O, Lemma 3.2], there exist a metrizable space Z and a one-to-one onto map $f : X \to Z$ such that every $f(H_m)$ is a discrete closed family and $f(\mathcal{B}_n)$ is a closure preserving closed family. For $B \in \mathcal{B}_n$, there exists a map $\Psi'_B : f(B) \to I$ such that $\Psi'_B : X \to I$ such that

$$\Psi_B(x) = \Psi'_B \circ f(x)$$
 if $x \in B$; and
 $\Psi_B(x) = 0$ if $x \notin B$.

This result was announced in "General Topology Synposium, Japan", December 1983.

Received June 11, 1983.