
TSUKUBA J. MATH.
Vol. 7 No. 2 (1983). 215–226

UNIFORM VECTOR BUNDLES OF RANK $(n+1)$ ON $P_{n}$

By

Edoardo BALLICO

Introduction.

Here vector bundle (or sometimes bundle) means aIgebraic vector bundle on
an algebraic variety. Every variety is defined over an algebraically closed field
$K$ with $ch(K)=0$ . We write $P_{n}$ $:=P_{n}(K)$ . A vector bundle $E$ on $P_{n}$ is uniform
if there exists a sequence of integers $(k;r_{1}, \cdots, r_{k} ; a_{1}, \cdots, a_{k})$ (called the
splitting type of $E$ ) with $a_{1}>\cdots>a_{k}$ and such that for every line $L$ of $P_{n}$ :
$E_{L}\cong\oplus_{i=1}^{K}r_{i}\mathcal{O}_{L}(a_{i})$ . If the rank $r$ of $E$ is low with respect to the dimension $n$

of $P_{n}$ , there are only a few uniform vector bundles of rank $r$ . See [1], [2], [5]

for the following

THEOREM. For $r\leqq n,$ $n\geqq 2,$ $r=3$ and $n=2$ , the uniform vector bundles of
rank $r$ on $P_{n}$ are (up to isomorphism) direct sum of line bundles, $\Omega_{P_{n}}^{1}(a),$ $TP_{n}(b)$ ,
$S^{2}TP_{n}(c)$ , with $a,$ $b,$ $c$ integers.

In particular every such bundle is homogeneous, $i.e$ . for every automorphism
$g$ of $P_{n},$ $g^{*}(E)\cong E$ . But for $r\geqq 2n$ there exists uniform vector bundles of rank
$r$ on $P_{n}$ which are not homogeneous. Thus it remains open the range $n+1\leqq r<2n$ .
Ph. Ellia in [3] proved that a uniform $rank-(n+1)$ vector bundle on $P_{n}$ is
decomposable if $n=3,4,5$ or $n=p-1$ where $p$ is a prime number. His methods
give also many other partial results on $rank-(n+1)$ vector bundles on $P_{n}$ , giving
evidence to the following

TEEOREM 1. Every uniform vector bundle of rank $n+1$ on $P_{n}$ is isomorphic
either to a direct sum of line bundles or to the direct sum of a line bundle and of
$\Omega_{P_{n}}^{1}(b)$ or $TP_{n}(a)$ .

In this paper we prove theorem 1, using the methods of [3]. To pass from
[3] to theorem 1 no geometry is involved; the only problems are about roots of
unity, roots of polynomials or decomposition of polynomials. Thus the proofs are
tricky.
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