ON PROJECTIVE COHEN-MACAULAYNESS OF A DEL PEZZO SURFACE EMBEDDED BY A COMPLETE
 LINEAR SYSTEM

By

Yuko Номма

Let k be an algebraically closed field. We understand by a Del Pezzo surface X over k a non-singular rational surface on which the anti-canonical sheaf $-\omega_{X}$ is ample. We call the self-intersection number $d=\omega_{X}^{2}$ of ω_{X} the degree of X, then we get that $1 \leqq d \leqq 9$. It is well known that X is isomorphic to $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$, which has degree 8, or an image of \boldsymbol{P}^{2} under a monoidal transformation with center the union of $r=9-d$ points which satisfies the following conditions:
(a) no three of them lie on a line;
(b) no six of them lie on a conic;
(c) there are no cubics which pass through seven of them and have a double point at the eighth point.
Conversely any surface described above is a Del Pezzo surface of the corresponding degree ([8, III, Theorem 1]). It is also well known that $-\omega_{X}$ is very ample when $d \geqq 3$ and that ample divisors on X of degree 3 , which is a cubic surface, are very ample too. In this paper we will get that ample divisors on X of degree $d \geqq 3$ are very ample and that ample divisors on X of degree 2 [resp. 1] other than $-\omega_{X}$ $\left[\right.$ resp. $-\omega_{X}$ nor $\left.-2 \omega_{X}\right]$ are very ample.

A closed subscheme V in \boldsymbol{P}^{N} is said to be projectively Cohen-Macaulay if its affine cone is Cohen-Macaulay. It is equivalent to that $H^{1}\left(\boldsymbol{P}^{N}, \mathcal{G}_{V}(m)\right)=0$ for every $m \in Z$ and $H^{i}\left(V, \mathcal{O}_{V}(m)\right)=0$ for every $m \in Z$ and $0<i<\operatorname{dim} V$. In this paper, we will get that $\psi_{\mid D_{1}}(X)$ is projectively Cohen-Macaulay for a very ample divisor D on X, where $\psi_{|D|}$ is the morphism from X to $\boldsymbol{P}^{\mathrm{dim}|D|}$ defined by the complete linear system $|D|$ of D. We also study the homogeneous ideal $I(D)=\operatorname{Ker}[S \Gamma(D) \longrightarrow \underset{n \geq 0}{\oplus} \Gamma(n D)]$ defining $\psi_{\mid D_{1}(}(X)$. These results will be stated and proved in $\S 3$ and $\S 5$. The fourth section will be devoted to a study on $-n \omega_{X}$ of a Del Pezzo surface X of degree 1 or 2 .

In § 1 we will compute the dimension $h^{i}(D)$ of the i-th cohomology group $H^{i}\left(X, \mathcal{O}_{X}(D)\right)$ of the invertible sheaf $\mathcal{O}_{X}(D)$ corresponding to a divisor D .

[^0]
[^0]: Received August 13, 1981. Revised January 5, 1982.

