ON PROJECTIVE COHEN-MACAULAYNESS OF A DEL PEZZO SURFACE EMBEDDED BY A COMPLETE LINEAR SYSTEM

By

Yuko Номма

Let k be an algebraically closed field. We understand by a Del Pezzo surface X over k a non-singular rational surface on which the anti-canonical sheaf $-\omega_X$ is ample. We call the self-intersection number $d = \omega_X^2$ of ω_X the degree of X, then we get that $1 \le d \le 9$. It is well known that X is isomorphic to $P^1 \times P^1$, which has degree 8, or an image of P^2 under a monoidal transformation with center the union of r=9-d points which satisfies the following conditions:

(a) no three of them lie on a line;

(b) no six of them lie on a conic;

(c) there are no cubics which pass through seven of them and have a double point at the eighth point.

Conversely any surface described above is a Del Pezzo surface of the corresponding degree ([8, III, Theorem 1]). It is also well known that $-\omega_X$ is very ample when $d \ge 3$ and that ample divisors on X of degree 3, which is a cubic surface, are very ample too. In this paper we will get that ample divisors on X of degree $d \ge 3$ are very ample and that ample divisors on X of degree 2 [resp. 1] other than $-\omega_X$ [resp. $-\omega_X$ nor $-2\omega_X$] are very ample.

A closed subscheme V in \mathbb{P}^N is said to be projectively Cohen-Macaulay if its affine cone is Cohen-Macaulay. It is equivalent to that $H^1(\mathbb{P}^N, \mathcal{J}_V(m))=0$ for every $m \in \mathbb{Z}$ and $H^i(V, \mathcal{O}_V(m))=0$ for every $m \in \mathbb{Z}$ and $0 < i < \dim V$. In this paper, we will get that $\phi_{|D|}(X)$ is projectively Cohen-Macaulay for a very ample divisor D on X, where $\phi_{|D|}$ is the morphism from X to $\mathbb{P}^{\dim |D|}$ defined by the complete linear system |D| of D. We also study the homogeneous ideal $I(D) = \operatorname{Ker} \left[S\Gamma(D) \longrightarrow \bigoplus_{n \geq 0} \Gamma(nD) \right]$ defining $\phi_{|D|}(X)$. These results will be stated and proved in § 3 and § 5. The fourth section will be devoted to a study on $-n\omega_X$ of a Del Pezzo surface X of degree 1 or 2.

In §1 we will compute the dimension $h^i(D)$ of the *i*-th cohomology group $H^i(X, \mathcal{O}_X(D))$ of the invertible sheaf $\mathcal{O}_X(D)$ corresponding to a divisor D.

Received August 13, 1981. Revised January 5, 1982.