REMARK ON LOCALIZATIONS OF NOETHERIAN RINGS WITH KRULL DIMENSION ONE

By

Hideo Sato

Let R be a left noetherian ring with left Krull dimension α. For a left $R-$ module M which has Krull dimension, we denote its Krull dimension by $K-\operatorname{dim} M$ in this note. In the previous paper [6], we have shown that the family $\boldsymbol{F}_{\beta}(R)=$ $\left\{{ }_{R} I \subseteq R \mid K-\operatorname{dim} R / I \leq \beta\right\}$ is a left (Gabriel) topology on R for any ordinal $\beta<\alpha$. We are most interested in the case when R is (left and right) noetherian, $\alpha=1$ and $\beta=0$. Let R be such a ring and we denote $\boldsymbol{F}_{0}(R)$ by \boldsymbol{F}. Let A be the artinian radical of R. Then Lenagan [3] showed that R / A has a two-sided artinian, twosided classical quotient ring $Q(R / A)$. In this note, we shall show that R_{F}, the quotient ring of R with respect to \boldsymbol{F}, is isomorphic to $Q(R / A)$ as ring and we shall investigate a more precise structure of R_{F} under some additional assumptions.

In this note, a family of left ideals of R is said to be a topology if it is a Gabriel topology in the sense of Stenström's book [7]. So a perfect topology in this note is corresponding to a perfect Gabriel topology in [7]. Let \boldsymbol{G} be a left topology on R, and M a left R-module. A chain of submodules of M;

$$
M_{0} \supseteq M_{1} \supseteq \cdots \cdots \supseteq M_{r}
$$

is called a \boldsymbol{G}-chain if each M_{i-1} / M_{i} is not a \boldsymbol{G}-torsion module. A \boldsymbol{G}-chain of M is said to be maximal if it has no proper refinement of \boldsymbol{G}-chain.

The following lemma can be proved easily.
Lemma 1. If ${ }_{R} M$ has a finite maximal \boldsymbol{G}-chain of length r, then any \boldsymbol{G}-chain of M has a finite length s and $s \leq r$.

Hence we can give a definition of \boldsymbol{G}-dimension of M, denoted by \boldsymbol{G}-dim M, as follows; if M has a finite maximal \boldsymbol{G}-chain of length r, define \boldsymbol{G} - $\operatorname{dim} M=r$, and \boldsymbol{G}-dim $M=\infty$ otherwise.

Corollary 2. For any short exact sequence of R-modules;

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

we have \boldsymbol{G}-dim $M=\boldsymbol{G}$-dim $M^{\prime}+\boldsymbol{G}$-dim $M^{\prime \prime}$.
Received October 27, 1978. Revised February 6, 1979

