A NOTE ON A FORMALIZED ARITHMETIC WITH FUNCTION SYMBOLS / AND +.

By

Tsuyoshi YUKAMI

Introduction.

Let \mathfrak{L}_0 be the first order language with function symbols ', + and the equality symbol =. By \mathfrak{L} we denote the first order language obtained from \mathfrak{L}_0 by adding a ternary predicate symbol P. The theory in \mathfrak{L} with the following axioms and axiom schemata is signified by \mathfrak{N} .

- $(N-1) \quad \forall x \neg (x'=0).$
- $(N-2) \quad \forall x \forall y (x'=y'\supset x=y).$
- $(N-3) \quad \forall x(x+0=x).$
- $(N-4) \forall y \forall y (x+y'=(x+y)').$
- $(N-5) \forall x P(x, 0, 0).$
- $(N-6) \quad \forall x \forall y \forall z \{ P(x, y, z) \supset P(x, y', z+x) \}.$
- $(N-7) \quad \forall x \forall y \forall z \forall w \{ (P(x, y, z) \land P(x, y, w)) \supset z = w \}.$
- $(N-8) \quad \forall x(x=x).$
- $(\mathbf{N}-9) \quad \forall x \forall y \{x = y \supset (\mathfrak{A}(x) \supset \mathfrak{A}(y))\}.$
- $(N-10) \quad \{\mathfrak{A}(0) \wedge \forall x ((\mathfrak{A}(x) \supset \mathfrak{A}(x')))\} \supset \forall x \mathfrak{A}(x).$
- (N-11) s=t, where s=t is valid.

For a term t, b(t) means the number of occurrences of bound varibles in t. For a formula \mathfrak{A} , $b(\mathfrak{A})$ is defined inductively as follows. 1. $b(r=s)=\max(b(r), b(s))$. 2. $b(P(r, s, t))=\max(b(r), b(s), b(t))$. 3. $b(\neg \mathfrak{A})=b(\mathfrak{A})$. 4. $b(\mathfrak{A})=b(\mathfrak{A})$ = $b(\mathfrak{A})$ 0. 5. $b(\forall x\mathfrak{A})=b(\exists x\mathfrak{A})=b(\mathfrak{A})$.

In [3] we proved that:

For any formula $\mathfrak{A}(a)$ of \mathfrak{L} ; if there is a number m such that, for any natural number n, there exists a proof \mathfrak{P} of $\mathfrak{A}(\bar{n})$ in \mathfrak{N} with the following properties (1) and (2), then $\forall x \mathfrak{A}(x)$ is provable in \mathfrak{N} .

- (1) The length of \mathfrak{P} is less than m.
- (2) For any induction schema \mathfrak{B} in \mathfrak{P} which is not a formula of \mathfrak{L}_0 , $b(\mathfrak{B}) \leq m$. The purpose of this paper is to prove the following theorem.

Theorem. There are a formula $\mathfrak{A}(a)$ and a natural number M such that: (a)