# AN ALTERNATIVE PROOF OF BIRMAN-HILDEN-VIRO'S THEOREM 

By<br>Moto-o Takahashi

In this paper we shall give an alternative proof of the thorem of Birman-HildenViro (the following theorem (i), (iii), (iv), c.f. [2], [3], [6]).

THEOREM. (i) Every closed orientable 3-manifold $M$ of Heegaard genus $\leq 2$ is homeomorphic to the 2-fold branched covering space of $S^{3}$ with a 3-bridge link $L$ as its branch line.
(ii) In particular, if $M$ is a homology sphere, then $L$ is a knot. (More generally $L$ is a knot iff the order of the 1-dimensional homology group of $M$ is odd.)
(iii) There is an algorithm to construct $L$ from (a Heegaard diagram of) $M$.
(iv) $M$ is homeomorphic to $S^{3}$ iff $L$ is the trivial knot. (And hence there is an algorithm to decide whether $M$ is $S^{3}$ or not.)
(v) Each equivalence class of Heegaard splittings determines a unique knot type.
(vi) $L$ is not uniquely determined by $M$. ( $L$ depends on a Heegaard splitting of $M$.)

Remark 1. (iv) is proved as follows: If M is homeomorphic to $S^{3}$, then by (i) $S^{3}$ is the 2-fold branched covering of $S^{3}$ with $L$ as its branch line. This gives an involution of $S^{3}$ with fixed points $L$. By the result of [8], $L$ must be a trivial knot. Whether $L$ is a trivial knot or not is decided by the algorithm of Haken in [9].

REMARK 2. (v) is proved in Theorem 8 in [3] and (vi) is proved in [5] and [10].

In the following we shall prove (i).
Suppose that $M$ is a closed orientable 3-manifold of Heegaard genus $\leq 2$. Then $M$ has a Heegaard splitting of genus 2. Hence we may suppose that $M$ is obtained by pasting suitably surfaces of two handle-bodies of genus 2. (See the figure 1.)

In this pasting let the loops $d^{\prime}, e^{\prime}, f^{\prime}$ on $M_{1}$ correspond to the loops $d, e, f$ on $\mathrm{M}_{2}$. In this case we may suppose that the loops $a, b, c$ and the loops $d^{\prime}, e^{\prime}, f^{\prime}$ intersect transversally in only a finite number of points.

Moreover we may suppose that there is no section of the loops which bounds

[^0]
[^0]:    Received August 17, 1977. Revised December 13, 1977.

