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ALGEBRAIC INDEPENDENCE OF FIBONACCI
RECIPROCAL SUMS ASSOCIATED WITH
NEWTON’S METHOD

By
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1. Introduction
Let {F,},-o be the sequence of Fibonacci numbers defined by
Fb=0, Fi=1 Fy=Fu+F, (n=0) (1)
and {L,},., the sequence of Lucas numbers defined by
Lo=2, Li=1, Lyo=Ly1+L, (n20). (2)

There are many investigations on the arithmetic properties of reciprocal sums of
products of Fibonacci or Lucas numbers. André-Jeannin [1] proved that the sums
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are expressed as explicit formulas, more precisely as linear combinations over
Q(v/5) of the values of the Lambert series > -°,z"/(1 —z") at numbers of
Q(V/5). It is well-known that
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(For the proof see (9) in the next section.) Brousseau [2] proved that
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It is easily seen that
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