TSUKUBA J. MATH. Vol. 27 No. 2 (2003), 319–339

ON THE GENERALIZED JOSEPHUS PROBLEM

Mar chuimhne air an t-ollamh Rob Alasdair Mac Fhraing nach mairean

By

Saburô Uchiyama

1. Introduction

The legendary problem of Josephus and the forty Jews and the problem of fifteen Christians and fifteen Tarks, and also some variants thereof, are widely well known (cf. [1], [6], [10], [11], [14]) and have been discussed and generalized mathematically by several authors (cf. e.g. [2], [3], [4], [5], [8]).

These problems, in a rather general form, may well be formulated thus: Let n and m be given positive integers; we arrange n distinct points, named 1, 2, ..., n, in a circle in the natural order (the points adjacent to 1 being 2 and n if n > 2) and delete, starting from the point 1, every mth point in turn until all the points are removed. The problem is to determine the kth point $a_m(k,n)$ (sometimes called the kth Josephus number) to be deleted when n,m and k $(1 \le k \le n)$ are assigned. It is plain that

$$1 \leq a_m(k,n) \leq n$$

and

$$a_m(1,n) \equiv m \pmod{n}$$
.

Consequently, if the validity is assumed of the congruence

(1)
$$a_m(k+1, n+1) \equiv m + a_m(k, n) \pmod{n+1} \quad (1 \le k \le n),$$

then one can recursively determine all the numbers $a_m(k, n)$.

A simple proof of the congruence relation (1) which is due substantially to P. G. Tait [13], was given by R. A. Rankin [8] (see also [4]); however, it should be noted that the basic congruence (1) was practically known to Seki Takakazu (1642?-1708) in [12] and to Leonhard Euler (1707-1783) in [3] as well. On the basis of (1) Rankin [8] has established an algorithm for determining the last

Received December 3, 2001. Revised May 21, 2002.