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1. Introduction

The legendary problem of Josephus and the forty Jews and the problem of
fifteen Christians and fifteen Tarks, and also some variants thereof, are widely
well known (cf. [1], [6], [10], [11], [14]) and have been discussed and generalized
mathematically by several authors (cf. e.g. [2], [3], [4], [5], [8]).

These problems, in a rather general form, may well be formulated thus: Let $n$

and $m$ be given positive integers; we arrange $n$ distinct points, named 1,2, . . . , $n$ ,
in a circle in the natural order (the points adjacent to 1 being 2 and $n$ if $n>2$)
and delete, starting from the point 1, every mth point in tum until all the points
are removed. The problem is to determine the kth point $a_{m}(k, n)$ (sometimes
called the kth Josephus number) to be deleted when $n,$ $m$ and $k(1\leqq k\leqq n)$ are
assigned. It is plain that

$1\leqq a_{m}(k, n)\leqq n$

and

$a_{m}(1,n)\equiv m$ $(mod n)$ .

Consequently, if the validity is assumed of the congmence

(1) $a_{m}(k+1,n+1)\equiv m+a_{m}(k, n)(mod n+1)$ $(1 \leqq k\leqq n)$ ,

then one can recursively determine all the numbers $a_{m}(k, n)$ .
A simple proof of the congmence relation (1) which is due substantially to

P. G. Tait [13], was given by R. A. Rankin [8] (see also [4]); however, it should
be noted that the basic congmence (1) was practically known to Seki Takakazu
$(1642?-1708)$ in [12] and to Leonhard Euler (1707-1783) in [3] as well. On the
basis of (1) Rankin [8] has established an algorithm for determining the last
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