ON EQUATIONS OF THE TYPE Au = g(x, u, Du) WITH DEGENERATE AND NONLINEAR BOUNDARY CONDITIONS

By

Thomas Runst and Yavdat IL'YASOV

1. Introduction and Main Results

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with C^{∞} boundary $\partial \Omega$. Let

$$Au(x) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_j}(x) \right) + c(x)u(x)$$

be a second order elliptic differential operator with real C^{∞} functions a_{ij} , c on $\overline{\Omega}$ satisfying the following properties:

- (p1) $a_{ii}(x) = a_{ii}(x), i, j = 1, \ldots, n, x \in \overline{\Omega}.$
- (p2) There exists a positive constant C_0 such that for all $x \in \overline{\Omega}$ and all $\xi \in \mathbb{R}^n$

$$\sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \ge C_0|\xi|^2.$$

(p3) $c(x) \ge 0$ in $\overline{\Omega}$.

Let Du be the gradient of u. We consider the following class of degenerate boundary value problems for semilinear second order elliptic differential operators

(P)
$$Au = g(x, u, Du) \text{ in } \Omega, \quad Bu = a \frac{\partial u}{\partial v} + bu = \varphi \text{ on } \partial \Omega$$

in the framework of Sobolev spaces $W_p^2(\Omega)$ with p > n, where B is a degenerate boundary operator. Let us remark that

$$W_p^2(\Omega) \hookrightarrow C^1(\overline{\Omega}) \quad \text{if} \ p > n,$$

where \hookrightarrow denotes the continuous embedding. Here: