A POWER SERIES SATISFYING A CERTAIN FUNCTIONAL EQUATION

By

Masayuki SAITO, Takeshi TOSHIMITSU, and Yoshihisa UCHIDA

1. Introduction

In this paper, we are concerned with an enumeration of rooted trees. We consider isomers of chain saturated mono-hydroxy alcohols, that is to say, having no double, triple bonds and cyclic structure. Since the carbon atom has a valency of four and the hydrogen atom a valency of one, the structural formulas of these isomers form ternary rooted trees. For example, the following figures indicates that two isomers of propyl-alcohols:

Figure 1. Propyl-alcohol

In this figure, we regard that the remaining valencies of carbon atoms are bonded with hydrogen atoms. Let C(n) be the number of the isomers of the alcohols containing *n* carbon atoms. We define C(0) = 1. Clearly $C(n) \ge 1$ $(n \ge 0)$ is nondecreasing. We define a power series g(z) by

$$g(z) = \sum_{n \ge 0} C(n) z^n = 1 + z + z^2 + 2z^3 + 4z^4 + 8z^5 + 17z^6 + \cdots,$$
(1)

which satisfies the functional equation:

$$g(z) = 1 + \frac{z}{6}(g(z)^3 + 3g(z)g(z^2) + 2g(z^3))$$
(2)

(cf. Temperley [5], Polya [4]). Regarding the alcohol enumeration problem considered in (2) Polya concluded that the number of isomeric hydrocarbons of

Received August 18, 1997 Revised June 7, 1999