A NOTE ON KAEHLERIAN METRICS WITH CERTAIN PROPERTY FOR VRIC

By

Eriko Omachi

0. Introduction

Let M^{2n} be a 2n real dimensional Kaehlerian manifold, whose complex structure is given by a parallel tensor field $F = (F_i^i)$ satisfying

$$F_j^r F_r^i = \delta_j^i, \quad g_{ji} F_\ell^j F_k^i = g_{\ell k},$$

where $g = (g_{ji})$ is the Riemannian metric tensor of M^{2n} . Let $K = (K_{kji}^h)$ be the Bochner curvature tensor and $\hat{K} = (K_{kji})$ a tensor given by

(0.1)
$$K_{kji} = \nabla_k R_{ji} - \nabla_j R_{ki} + \frac{1}{4(n+1)} (g_{ki} \delta^h_j - g_{ji} \delta^h_k + F_{ki} F^h_j - F_{ji} F^h_k + 2F_{kj} F^h_i) r_h,$$

where $R = (R_{kji}^h)$ is the Riemannian curvature tensor, $Ric = (R_{ji}) = (R_{kji}^h)$ the Ricci tensor, and $r = R_k^h$ the scalar curvature.

Let us consider the condition

$$\nabla_k R_{ji} = \frac{1}{4(n+1)} (2r_k g_{ji} + r_j g_{ki} + r_i g_{kj} + \tilde{r}_j F_{ik} + \tilde{r}_i F_{jk}),$$

where $\tilde{r}_j = F_j^h r_h$ and $r_j = \nabla_j r$. This condition gives a necessary and sufficient condition for equality in the inequality

$$\frac{1}{m+1}|dr|^2 \le |\nabla \operatorname{Ric}|^2$$

which was proved in [2].

If M^{2n} satisfies (#) \hat{K} vanishes [2]. But the converse is not true. The example of metric satisfying (#) is unknown, except the case where r is constant.

On the other hand, if M^{2n} is Bochner-flat, i.e. K = 0, then \hat{K} vanishes. The