A CERTAIN GRAPH OBTAINED FROM A SET OF SEVERAL POINTS ON A RIEMANN SURFACE

By

Naonori Ishii

Introduction

0-1. Let M be a compact Riemann surface of genus $g \ge 2$, and let P_1, P_2, \ldots, P_n be distinct points on M. We define the Weierstrass gap set $G(P_1, P_2, \ldots, P_n)$ by

 $G(P_1, P_2, \ldots, P_n) := \{(\gamma_1, \gamma_2, \ldots, \gamma_n) \in \mathbb{N}_0 \times \cdots \times \mathbb{N}_0 \mid \nexists \text{ meromorphic} \}$

function f on M whose pole divisor $(f)_{\infty}$ is $\gamma_1 P_1 + \gamma_2 P_2 + \cdots + \gamma_n P_n$,

where N_0 is the set of non-negative integers.

When n = 1, $G(P_1)$ is the set of Weierstrass gaps at P_1 . One of the essential differences between the case n = 1 and the case $n \ge 2$ is that the cardinarity $\# G(P_1)$ is the constant g but $\# G(P_1, \ldots, P_n)$ $(n \ge 2)$ depends on the choice of M and the set of points $\{P_1, \ldots, P_n\}$ on M.

Kim has given formulas for $\# G(P_1, P_2)$ and shown the following inequalities

$$\frac{(g^2+3g)}{2} \le \# G(P_1,P_2) \le \frac{(3g^2+g)}{2}.$$

Moreover he has proved that the upper bound $(3g^2 + g)/2$ can be realized if and only if "*M* is hyperelliptic and $|2P_1| = |2P_2| = g_2^{1}$ " ([3]). The lower bound $(g^2 + 3g)/2$ can be attained by taking general points P_1 and P_2 on arbitrary *M*. This is stated in [1] without proof, and has been proved by Homma ([2]). He also has translated Kim's formulas into other practical ones, and added several interesting remarks in the case where *M* is a curve defined over a field of characteristic $p \ge 0$ ([2]). Through their works it seems to be helpful to use a certain type of graph $D^{(n)}$ defined as follows.

DEFINITION 0-2 (Riemann-Roch Graph). Fix positive integers g and n. Let \mathbf{e}_i be the *n*-tuple $(0, \ldots, 0, 1, 0, \ldots, 0)$ (i.e., the *i*-th component of \mathbf{e}_i is 1) in \mathbf{N}_0^n .

Received October 3, 1997

Revised October 26, 1998