THE INVERSE SURFACE AND THE OSSERMAN INEQUALITY*

By

Zuhuan Yu

0. Introduction

In this paper, we shall work with surfaces of constant mean curvature one in hyper-bolic 3-space. We abbreviate constant mean curvature one by CMC-1. These surfaces share many properties with minimal surfaces in Euclidean 3-space. A striking result is that these surfaces have a hyperbolic analogue of Weierstrass representation formula [2]. Another important property is that the total curvature of CMC-1 surfaces is not necessarily an integral multiple of 4π , and does not generally satisfy Osserman inequality [4].

Let $f: M^2 \to H^3(-1)$ be a CMC-1 immersion. Then there exist a null holomorphic immersion $F: \tilde{M}^2 \to SL(2, C)$, such that $f = F \cdot F^*$, where \tilde{M}^2 is the universal cover of M^2 . By taking the inverse of the matrix F, we can construct a new CMC-1 surface $f_{-1}: \tilde{M}^2 \to H^3(-1)$, call it the inverse surface (or dual surface [5]). Although the inverse surface is defined on the universal cover \tilde{M}^2 , its metric ds_{-1}^2 is well defined on M^2 . So we have two metrics on M^2 , and they have the same completeness [6]. Umehara and Yamada have shown that if the surface $f: M^2 \to H^3(-1)$ is complete and of finite total curvature, then the following inequality holds

$$\frac{1}{2\pi} \int_{M^2} k_{-1} \, dA_{-1} \le \chi(M^2) - n, \tag{0.1}$$

where n is the number of ends of the original CMC-1 surface, the equality holds if and only if all the ends are regular and embedded [5].

By carefully observing, we may find that the condition of finite total curvature is not necessary. Indeed we have the following theorem

1991 Mathematics Subject Classification: Primary 53A10; Secondary 53C42

Key words and phrases: constant mean curvature, hyperbolic space.

Received May 28, 1997

^{*}Partially supported by NNSFC and SFECC

Revised January 12, 1998