REPRESENTATION OF q-ANALOGUE OF RATIONAL BRAUER ALGEBRAS*

By

Masashi Kosuda

Introduction

Let q and a be indeterminates over a field K of characteristic 0, and let K(a,q) denote the field of rational functions. We define the algebra $H_{m,n}(a,q)$ over K(a,q) by generators and relations. (See the Definition 2.1.) If we replace the indeterminate a with q^{-r} in the definition, we have a q-analogue of rational Brauer algebra $H_{m,n}^{r}(q)$, which we have introduced in the previous paper with J. Murakami [8]. (In the paper [8], we called the algebra $H_{m,n}^{r}(q)$ the generalized Hecke algebra.) The algebra $H_{m,n}^{r}(q)$ is semisimple in case $r \ge m + n$, as we already observed in [8]. This observation is extended to the algebra $H_{m,n}(a,q)$. That is to say, $H_{m,n}(a,q)$ is also semisimple.

In this paper, we construct new representations of the algebras $H_{m,n}(a,q)$ and $H_{m,n}^{r}(q)$. These representations are irreducible and they are obtained from the left regular representations of $H_{m,n}(a,q)$ and $H_{m,n}^{r}(q)$ respectively.

Our previous paper was written originally to investigate the centralizer algebra of mixed tensor representations of quantum algebra $\mathscr{U}_q(gl_n(C))$, which was q-analogue version of the work of Benkart et al. [1]. (The existence of their preliminary version of the paper [1] was informed to the author by Professor Okada.) Their original situation was as follows. Let G denote the general linear group GL(r, C) of $r \times r$ invertible complex matrices and let V be the vector space on which G acts naturally. Let V^* be the dual space of V. The mixed tensor T of M copies of V and M copies of V^* is defined by $T = (\bigotimes^m V) \bigotimes (\bigotimes^n V^*)$. In this situation, they constructed the irreducible representations of the centralizer algebra $\operatorname{End}_G(T)$, by locating the maximal vectors in the mixed tensor T. Replacing M with $M_q(gl_n(C))$ and extending the underlying field M to M to M to M and extending the underlying field M to M to M and M and extending the underlying field M to M to M to M and extending the underlying field M to M to M and M to M and extending the underlying field M to M to M the M the M to M the M the M to M the M th

Received December 25, 1995.

Revised November 11, 1996.

^{*}This work is partially supported by JSPS Fellowships for young scientist.