TSUKUBA J. MATH. Vol. 21 No. 2 (1997), 529–540

KRONECKER FUNCTION RINGS OF SEMISTAR-OPERATIONS

By

Akira OKABE and Ryûki MATSUDA

1. Introduction

Let D be a commutative integral domain with quotient field K. Let F(D)denote the set of non-zero fractional ideals of D in the sense of [K], i.e., nonzero R-submodules of K and let F'(D) denote the subset of F(D) consisting of all members A of F(D) such that there exists some $0 \neq d \in D$ with $dA \subset D$. Let f(D) be the set of finitely generated members of F(D). Then $f(D) \subset$ $F'(D) \subset F(D)$.

A mapping $A \to A^*$ of F'(D) into F'(D) is called a *star-operation* on D if the following conditions hold for all $a \in K - \{0\}$ and $A, B \in F'(D)$:

- (1) $(a)^* = (a), (aA)^* = aA^*;$
- (2) $A \subset A^*$; if $A \subset B$, then $A^* \subset B^*$; and
- (3) $(A^*)^* = A^*$.

A fractional ideal $A \in F'(D)$ is called a *-*ideal* if $A = A^*$. We denote the set of all *-ideals of D by $F_*(D)$. A star-operation * on D is said to be of finite character if $A^* = \bigcup \{J^* | J \in f(D) \text{ with } J \subset A\}$ for all $A \in F'(D)$. It is well known that if * is a star-operation on D, then the mapping $A \to A^{*_f}$ of F'(D) into F'(D) given by $A^{*_f} = \bigcup \{J^* | J \in f(D) \text{ with } J \subset A\}$ is a finite character staroperation on D. Clearly we have $A^* = A^{*_f}$ for all $A \in f(D)$ and all staroperations * on D.

The mapping on F'(D) defined by $A \to A_v = (A^{-1})^{-1}$ is a star-operation on D and is called the *v*-operation on D, where $A^{-1} = \{x \in K | xA \subset D\}$. The *t*-operation on D is given by $A \to A_t = \bigcup \{J_v | J \in f(D) \text{ with } J \subset A\}$, that is, $t = v_f$. The reader can refer to [G, Sections 32 and 34] for the basic properties of star-operations and the *v*-operation.

Received October 24, 1995.

Revised January 23, 1996.