ON THE EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS WITH SLOWLY DECAYING INITIAL DATA

By

Toshihiko Hamada

1. Introduction

In this paper, we study the Cauchy problem

$$u_t = \Delta u + |x|^{\sigma} u^p \quad \text{in } D \times (0, T),$$

$$(P) \quad u(x, t) = 0 \quad \text{on } \partial D \times (0, T),$$

$$u(x, 0) = a(x) \ge 0 \quad \text{in } D,$$

where $\sigma \geq 0, p > 1$.

The domain D is a cone in \mathbb{R}^N , such as

$$D = \{x \in \mathbf{R}^N \backslash 0; x/|x| \in \Omega\},\$$

where $\Omega \subset S^{N-1}$ is an open connected subset with smooth boundary. The nonnegative initial condition a(x) is continuous and $\langle x \rangle^{\sigma/(p-1)} a(x)$ is bounded in \overline{D} and a=0 on ∂D $(\langle x \rangle = \sqrt{1+|x|^2})$.

Let ω_1 be the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω , and γ_+ be the positive root of $\gamma(\gamma + N - 2) = \omega_1$. The following results are well known by the papers of Levine and Meier [3], [4] and Hamada [2].

- (I) If 1 , there is no nontrivial nonnegative global solution for any initial data.
- (II) If $p = 1 + (2 + \sigma)/(N + \gamma_+)$, there is no nontrivial nonnegative global solution for any initial data.
- (III) If $p > 1 + (2 + \sigma)/(N + \gamma_+)$, then there exist nontrival nonnegative global solutions for sufficiently small initial data.