CURVATURE BOUND AND TRAJECTORIES FOR MAGNETIC FIELDS ON A HADAMARD SURFACE

By

Toshiaki ADACHI

Introduction.

On a complete oriented Riemannian manifold M, a closed 2-form B is called a magnetic field. Let Ω denote the skew symmetric operator $\Omega: TM \to TM$ defined by $\langle u, \Omega(v) \rangle = B(u, v)$ for every $u, v \in TM$. We call a smooth curve γ a trajectory for B if it satisfies the equation $\nabla_{\dot{\gamma}} \dot{\gamma} = \Omega(\dot{\gamma})$. Since Ω is skew symmetric, we find that every trajectory has constant speed and is defined for $-\infty < t < \infty$. We shall call a trajectory normal if it is parametrized by its arc length. When γ is a trajectory for B, the curve σ defined by $\sigma(t) = \gamma(\lambda t)$ with some constant λ is a trajectory for λB . We call the norm $||B_x||$ of the operator $B_x: T_xM \times T_xM \to R$ the strength of the magnetic field at the point x. For the trivial magnetic field B = 0, the case without the force of a magnetic field, trajectories are nothing but geodesics. In term of physics it is a trajectory of a charged particle under the action of the magnetic field. For a classical treatment and physical meaning of magnetic fields see [8].

On a Riemann surface M we can write down $B = f \cdot \operatorname{Vol}_M$ with a smooth function f and the volum form Vol_M on M. When f is a constant function, the case of constant strength, the magnetic field is called *uniform*. On surfaces of constant curvature the feature of trajectories are well-known for every uniform magnetic field $k \cdot \operatorname{Vol}_M$. On a Euclidean plane \mathbb{R}^2 they are circles (in usual sense of Euclidean geometry) of radius 1/|k|. On a sphere $S^2(c)$ they are small circles with prime period $2\pi/\sqrt{k^2 + c}$. In these cases all trajectories are closed. On a hyperbolic plane $H^2(-c)$ of constant curvature -c, the situation is different. In his paper [4] Comtet showed that the feature of trajectories changes according to the strength of a uniform magnetic field $k \cdot \operatorname{Vol}_M$. When the strength |k| is greater than \sqrt{c} , normal trajectories are still closed, hence bounded, but if $|k| \le \sqrt{c}$ they are unbounded simple curves, in particular, if $|k| = \sqrt{c}$ they are horocycles. In the preceeding paper [2] we studied trajectories for Kähler magnetic fields $k \cdot B_J$,

Received June 6, 1994.