ON ISOMORPHISMS OF A BRAUER CHARACTER RING ONTO ANOTHER

Dedicated to Professor Hiroyuki Tachikawa

By

Kenichi YAMAUCHI

1. Introduction

Throughout this paper G, Z and Q denote a finite group, the ring of rational integers and the rational field respectively. Moreover we write \overline{Z} to denote the ring of all algebraic integers in the complex numbers and \overline{Q} to denote the algebraic closure of Q in the field of complex numbers. For a finite set S, we denote by |S| the number of elements in S.

Let $Irr(G) = \{\chi_1, \dots, \chi_h\}$ be the complete set of absolutely irreducible complex characters of G. Then we can view χ_1, \dots, χ_h as functions from G into the complex numbers. We write $\overline{Z}R(G)$ to denote the \overline{Z} -algebra spanned by χ_1, \dots, χ_h . For two finite groups G and H, let λ be a \overline{Z} -algebra isomorphism of $\overline{Z}R(G)$ onto $\overline{Z}R(H)$. Then we can write

$$\lambda(\chi_i) = \sum_{j=1}^h a_{ij} \chi_j', \quad (i = 1, \dots, h)$$

where $a_{ij} \in \overline{Z}$ and $Irr(H) = \{\chi'_1, \dots, \chi'_h\}$. In this case we write A to denote the $h \times h$ matrix with (i, j)-entry equal to a_{ij} and say that A is afforded by λ with respect to Irr(G) and Irr(H).

As is well known, concerning the isomorphism λ , we have the following two results, which seem to be most important. (For example see Theorem 1.3 (ii) and Lemma 3.1 in [5])

- (i) $|c_G(c_i)| = |c_H(c'_{i'})|$, $(i = 1, \dots, h)$ where $\{c_1, \dots, c_h\}$ and $\{c'_{1'}, \dots, c'_{h'}\}$ are complete sets of representatives of the conjugate classes in G and H respectively and $c_i \xrightarrow{\lambda} c'_{i'}$ $(i = 1, \dots, h)$. (Concerning a symbol " $c_i \xrightarrow{\lambda} c'_{i'}$ ", see the definition in [5] and also the definition in section 2 in this paper)
- (ii) A is unitary where A is the matrix afforded by λ with respect to Irr(G) and Irr(H).

In this paper our main objective is to give a necessary and sufficient condition

Received May 23, 1994. Revised September 19, 1994.