ON ISOMORPHISMS OF A BRAUER CHARACTER RING ONTO ANOTHER

Dedicated to Professor Hiroyuki Tachikawa

By

Kenichi Yamauchi

1. Introduction

Throughout this paper G, Z and Q denote a finite group, the ring of rational integers and the rational field respectively. Moreover we write \bar{Z} to denote the ring of all algebraic integers in the complex numbers and \bar{Q} to denote the algebraic closure of Q in the field of complex numbers. For a finite set S, we denote by $|S|$ the number of elements in S.

Let $\operatorname{Irr}(G)=\left\{\chi_{1}, \cdots, \chi_{h}\right\}$ be the complete set of absolutely irreducible complex characters of G. Then we can view $\chi_{1}, \cdots, \chi_{h}$ as functions from G into the complex numbers. We write $\bar{Z} R(G)$ to denote the \bar{Z}-algebra spanned by $\chi_{1}, \cdots, \chi_{h}$. For two finite groups G and H, let λ be a \bar{Z}-algebra isomorphism of $\bar{Z} R(G)$ onto $\bar{Z} R(H)$. Then we can write

$$
\lambda\left(\chi_{i}\right)=\sum_{j=1}^{h} a_{i j} \chi_{j}^{\prime}, \quad(i=1, \cdots, h)
$$

where $a_{i j} \in \bar{Z}$ and $\operatorname{Irr}(H)=\left\{\chi_{1}^{\prime}, \cdots, \chi_{h}^{\prime}\right\}$. In this case we write A to denote the $h \times h$ matrix with (i, j)-entry equal to $a_{i j}$ and say that A is afforded by λ with respect to $\operatorname{Irr}(G)$ and $\operatorname{Irr}(H)$.

As is well known, concerning the isomorphism λ, we have the following two results, which seem to be most important. (For example see Theorem 1.3 (ii) and Lemma 3.1 in [5])
(i) $\left|c_{G}\left(c_{i}\right)\right|=\left|c_{H}\left(c_{i^{\prime}}^{\prime}\right)\right|,(i=1, \cdots, h)$ where $\left\{c_{1}, \cdots, c_{h}\right\}$ and $\left\{c_{1}^{\prime}, \cdots, c_{h^{\prime}}^{\prime}\right\}$ are complete sets of representatives of the conjugate classes in G and H respectively and $c_{i} \xrightarrow{\lambda} c_{i^{\prime}}^{\prime}(i=1, \cdots, h)$. (Concerning a symbol " $c_{i} \xrightarrow{\lambda} c_{i^{\prime}}^{\prime \prime}$ ", see the definition in [5] and also the definition in section 2 in this paper)
(ii) A is unitary where A is the matrix afforded by λ with respect to $\operatorname{Irr}(G)$ and $\operatorname{Irr}(H)$.

In this paper our main objective is to give a necessary and sufficient condition

[^0]
[^0]: Received May 23, 1994. Revised September 19, 1994.

