THE STABLE TOPOLOGY OF MODULI SPACES OF PERIODIC INSTANTONS

By

Hiromichi MATSUNAGA

1. Introduction and statement of the result

Let *M* be a smooth 4-manifold which admits an open subset *K* with one end *N* and an open submanifold W_0 with two ends N_-, N_+ . W_1, W_2, \cdots denote copies of W_0 . The 4-manifold *M* will be called end-periodic if it admits a decomposition $M = K \cup_N W_0 \cup_N W_1 \cup \cdots$, where $N \subset K$ is identified with the end N_- of W_0 and the end N_+ of W_0 is identified with the end N_- of W_1 and so on. Let *Y* be the compact oriented 4-manifold which is obtained from W_0 by identifying the two ends. The manifold *Y* has a *Z*-cover $\tilde{Y} = \cdots_N W_{-1} \cup_N W_0 \cup_N W_1 \cdots$ with projection $\pi : \tilde{Y} \to Y$. A geometric object on *M*, a vector bundle, a connection, a differential operator, a Riemannian metric etc. will be called end-periodic if its restriction on $\operatorname{End} M = W_0 \cup_N W_1 \cdots$ is the pull back by π of an object on *Y*. By making choose a smooth function $s: W_0 \to [0,1]$ such that $s|_N = 0$ and $s|_N = 1$, we obtain a smooth step function *t* on *M* such that t(x) = n + s(x) if $x \in W_n$.

Let $P \to M$ be an end-periodic principal SU(2)-bundle, and A_0 be an endperiodic connection on P which is gauge equivalent over EndM to the product connection on End $M \times SU(2)$. Then by the lemma 7.1 in [7]

$$l = (1/8\pi^2) \int_M tr(F_{A_0} \wedge F_{A_0})$$

is an integer, where tr() is the trace on the adjoint representation of the group SU(2). Let $E \to M$ be an end-periodic vector bundle which is associated to the principal bundle $P \to M$. Put $L^2_{loc}(E) = \{ \text{section } u; u \in L^2(E|A) \text{ for every} \text{ measurable } A \subset M \}$, where we assume that the set A has a finite measure, and denote by $\|\cdot\|_{A_0}$ the norm by the covariant derivative $\nabla_{A_0} : C_0^{\infty}(E) \to C_0^{\infty}(E \otimes T^*M)$ of compactly supported smooth sections, further $\nabla_{A_0}^{(j)}$ denotes the j-times iterated derivative $\nabla_{A_0} \cdots \nabla_{A_0}$. For $\delta > 0$, put

$$\mathscr{A}_{k}(\delta) = \{A_{0} + a; a \in L^{2}_{5, \operatorname{loc}}(adP \otimes T^{*}M) \text{ with norm } \|a\|_{A_{0}} < \infty\},\$$

Received May 19, 1994. Revised December 1, 1994.