ON EMBEDDINGS OF PERFECT GO-SPACES INTO PERFECT LOTS

By

Harold R. BENNETT, Masami HOSOBUCHI and Takuo MIWA

§1. Introduction

A linearly ordered topological space (abbreviated LOTS) is a triple $\langle X, \lambda, \leq \rangle$, where $\langle X, \leq \rangle$ is a linearly ordered set and λ is the usual interval topology defined by \leq . Throughout this paper, λ , $\lambda(\leq)$ or λ_X denote the usual interval topology on a linearly ordered set $\langle X, \leq \rangle$.

A generalized ordered space (abbreviated GO-space) is a triple $\langle X, \tau, \leq \rangle$, where $\langle X, \leq \rangle$ is a linearly ordered set and τ is a topology on X such that $\lambda \subset \tau$ and τ has a base of open sets each of which is order-convex, where a subset A of X is called order-convex if $x \in A$ for every x lying between two points of A. For a GO-space $\langle X, \tau, \leq \rangle$ and $Y \subset X$, $\tau \mid Y$ denotes the subspace topology $\{U \cap Y : U \in \tau\}$ on Y and $\leq |Y|$ denotes the restricted ordering of \leq on Y. If it will cause no confusion, we shall omit λ (or τ) and \leq , and say simply "X is a LOTS (GO-space)". A topological space $\langle X, \tau \rangle$, where τ is a topology on a set X, is said to be *orderable* if $\langle X, \tau, \leq \rangle$ is a LOTS for some linear ordering \leq on X. Similarly, we say simply "X is an orderable space" if it will cause no confusion. A LOTS $Z = \langle Z, \lambda, \leq_Z \rangle$ is said to be a linearly ordered extension of a GO-space $X = \langle X, \tau, \leq_X \rangle$ if $X \subset Z$, $\tau = \lambda \mid X$ and $\leq_X = \leq_Z \mid X$. Furthermore, if X is closed (resp., dense) in the space $\langle Z, \lambda \rangle$, then Z is said to be a linearly ordered cextension (resp., d-extension) of X. Similarly, an orderable space $Z = \langle Z, \tau_z \rangle$ is said to be an orderable c- (resp., d-)extension of a GO-space $X = \langle X, \tau_X \leq \rangle$ if Xis a closed (resp., dense) subset of Z and $\tau_x = \tau_z \mid X$. Note that every GO-space has a compact linearly ordered d-extension ([5, (2.9)]).

Throughout this paper, we use the following notation: Let $\langle Y, \lambda, \leq \rangle$ be a LOTS. For a GO-space $\langle X, \tau, \leq \rangle$ with the same underlying set Y and the same order \leq , we write $X = GO_Y(R, E, I, L)$, where $I = \{x \in X : \{x\} \in \tau - \lambda\}$, $R = \{x \in X : \{x\} \in \tau - \lambda\} - I$, $L = \{x \in X : \{x\} \in \tau - \lambda\} - I$ and $E = X - (I \cup R \cup L)$.

The following problem naturally arises.

Received December 10, 1993. Revised March 17, 1995.