ON THE GAUSS MAP OF SURFACES OF REVOLUTION IN A 3-DIMENSIONAL MINKOWSKI SPACE

By

Soon MEEN CHOI

§ 1. Introduction.

For the Gauss map of a surface of revolution in \mathbb{R}^3 the following theorem is proved by Dillen, Pas and Verstraelen [3].

Theorem A. The only surfaces of revolution in \mathbf{R}^s whose Gauss map ξ satisfies

$$(1.1) \Delta \xi = A \xi, A \in Mat(3, \mathbf{R})$$

are locally the plane, the sphere and the circular cylinder.

In the case of a Minkowski space, a Gauss map is defined as follows. Let R_1^{n+1} be an (n+1)-dimensional Minkowski space with standard coordinate system $\{x_A\}$ whose line element ds^2 is given by $ds^2 = -(dx_0)^2 + \sum_{i=1}^n (dx_i)^2$. Let $S_1^n(c)$ (resp. $H^n(c)$) be an n-dimensional de Sitter space (resp. a hyperbolic space) of constant curvature c in R_1^{n+1} . We denote by $M^n(\varepsilon)$ a de Sitter space $S_1^n(1)$ or a hyperbolic space $H^n(-1)$, according as $\varepsilon=1$ or -1. Let M be a n-dimensional space-like or time-like hypersurface in R_1^{n+1} and ξ a unit vector field normal to M. Then, for any point p in M, we can regard $\xi(p)$ as a point in $H^n(-1)$ or $S_1^n(1)$ by translating parallelly to the origin in the ambient space R_1^{n+1} , according as the surface M is space-like or time-like. The map ξ of M into $M^n(\varepsilon)$ is called a Gauss map of M into R_1^{n+1} .

As a Lorentz version of Baikoussis and Blair's result [1], the author [2] proves the following

THEOREM B. The only space-like or time-like ruled surfaces in \mathbb{R}^3_1 whose Gauss map $\xi \colon M \to M^2(\varepsilon)$ satisfies (1.1) are locally the following spaces:

- i. R_1^2 , $S_1^1 \times R_1^1$ and $R_1^1 \times S_1^1$ if $\varepsilon = 1$,
- ii. R^2 and $H^1 \times R^1$ if $\varepsilon = -1$.

Partially supported by TERC-KOSEF. Received October 4, 1993,