ON THE GAUSS MAP OF RULED SURFACES IN A 3-DIMENSIONAL MINKOWSKI SPACE

By

Soon Meen CHOI

\S 1. Introduction.

Relative to Takahashi's theorem [9] for minimal submanifolds, the idea of submanifolds of finite type in a Euclidean space was introduced by Chen [2] and the theory is recently greatly developed. Let $x: M \rightarrow R^{n+1}$ be an isometric immersion of *n*-dimensional Riemannian manifold into an $(n+1)$ -dimensional Euclidean space \mathbb{R}^{n+1} and Δ the Laplacian on M. As a generalization of Takahashi's theorem for the case of hypersurfaces, Garay [4] considered the hypersurface satisfying the condition $\Delta x = Ax$, where A denotes the constant diagonal matrix of order $n+1$.

On the other hand, let $x: M \rightarrow R^{m}$ be an isometric immersion of a compact oriented *n*-dimensional Riemannian manifold into \mathbb{R}^{m} . For a generalized Gauss map $G: M\rightarrow G(n, m)\subset \mathbb{R}^{N}\left(N=\left(\begin{array}{c}m\\n\end{array}\right)$ of x, where $G(n, m)$ is the Grassmann manifold consisting of all oriented *n*-planes through the origin of \boldsymbol{R}^m , Chen and Piccinni [3] characterized the submanifold satisfying the condition $\Delta G = \lambda G$ $(\lambda\in R)$. For a hypersurface M in R^{n+1} and a unit vector field ξ normal to M, we can regard $\xi(p)(p\in M)$ as a point in an *n*-dimensional unit sphere $S^{n}(1)$ by translating parallelly to the origin in the ambient space \boldsymbol{R}^{n+1} . The map $\boldsymbol{\xi}$ of M into $S^{n}(1)$ is called a *Gauss map* of M in \mathbb{R}^{n+1} . Recently for the Gauss map of a surface in \mathbb{R}^{3} the following theorem is proved by Baikoussis and Blair [1].

THEOREM. The only ruled surfaces in \mathbb{R}^{3} whose Gauss map ξ satisfies

$$
(1.1) \quad \Delta \xi = A \xi \,, \quad A \in Mat \ (3, R)
$$

are locally the plane and the circular cylinder.

It seems to be interesting to investigate the Lorentz version of the above theorem. Now, let \mathbb{R}_{1}^{m+1} be an $(m+1)$ -dimensional Minkowski space with standard coordinate system $\{x_{A}\}$ whose line element ds^{2} is given by $ds^{2}=-(dx_{0})^{2}+$

Partially supported by TERC-KOSEF. Received August 20, 1993.