ON THE GAUSS MAP OF RULED SURFACES IN A 3-DIMENSIONAL MINKOWSKI SPACE

By

Soon Meen CHOI

§1. Introduction.

Relative to Takahashi's theorem [9] for minimal submanifolds, the idea of submanifolds of finite type in a Euclidean space was introduced by Chen [2] and the theory is recently greatly developed. Let $x: M \rightarrow \mathbb{R}^{n+1}$ be an isometric immersion of *n*-dimensional Riemannian manifold into an (n+1)-dimensional Euclidean space \mathbb{R}^{n+1} and Δ the Laplacian on M. As a generalization of Takahashi's theorem for the case of hypersurfaces, Garay [4] considered the hypersurface satisfying the condition $\Delta x = Ax$, where A denotes the constant diagonal matrix of order n+1.

On the other hand, let $x: M \to \mathbb{R}^m$ be an isometric immersion of a compact oriented *n*-dimensional Riemannian manifold into \mathbb{R}^m . For a generalized Gauss map $G: M \to G(n, m) \subset \mathbb{R}^N \left(N = \binom{m}{n} \right)$ of x, where G(n, m) is the Grassmann manifold consisting of all oriented *n*-planes through the origin of \mathbb{R}^m , Chen and Piccinni [3] characterized the submanifold satisfying the condition $\Delta G = \lambda G$ $(\lambda \in \mathbb{R})$. For a hypersurface M in \mathbb{R}^{n+1} and a unit vector field ξ normal to M, we can regard $\xi(p)$ $(p \in M)$ as a point in an *n*-dimensional unit sphere $S^n(1)$ by translating parallelly to the origin in the ambient space \mathbb{R}^{n+1} . The map ξ of M into $S^n(1)$ is called a *Gauss map* of M in \mathbb{R}^{n+1} . Recently for the Gauss map of a surface in \mathbb{R}^3 the following theorem is proved by Baikoussis and Blair [1].

THEOREM. The only ruled surfaces in \mathbb{R}^3 whose Gauss map ξ satisfies

(1.1)
$$\Delta \boldsymbol{\xi} = A \boldsymbol{\xi} , \qquad A \in \boldsymbol{Mat} \ (3, \boldsymbol{R})$$

are locally the plane and the circular cylinder.

It seems to be interesting to investigate the Lorentz version of the above theorem. Now, let R_1^{m+1} be an (m+1)-dimensional Minkowski space with standard coordinate system $\{x_A\}$ whose line element ds^2 is given by $ds^2 = -(dx_0)^2 +$

Partially supported by TERC-KOSEF. Received August 20, 1993.