ON SOME CLASSES OF ALMOST CONTACT METRIC MANIFOLDS

By

Jong Taek CHO*

1. Introduction

In [1] J. Berndt and L. Vanhecke introduced two classes (\mathfrak{C} - and \mathfrak{B} -spaces) of Riemannian manifolds which include the class of locally symmetric spaces using the properties of Jaoobi operators along geodesics. They provided some characterizations of \mathfrak{C} - and \mathfrak{B} -spaces and gave the classifications for dimensions two and three. For further developments on the two spaces, we refer to [2], [3] and [8]. Further, T. Takahashi ([19]) introduced the notion of a (Sasakian) locally φ -symmetric space which may be considered as the analogue in the almost contact metric case of locally Hermitian symmetric spaces. Also he gave examples and equivalent properties of Sasakian locally φ -symmetric spaces. For further results about the Sasakian locally φ -symmetric spaces, we refer to [5], [6].

In the present paper, we introduce in an analogous way as in [1] four classes of almost contact metric manifolds involving Sasakian locally φ -symmetric spaces. In section 2, we recall definitions and several elementary properties of an almost contact, a contact, a K-contact metric manifold and a Sasakian manifold. In sections 3 and 4 we give the definitions of a DC-space, a DP-space, a $\xi \mathfrak{G}$ -space and a $\xi \mathfrak{P}$ -space which are almost contact metric analogues of a \mathfrak{G} -space or a \$\mathbf{P}-space in the Riemannian case. We may observe that a Sasakian manifold is a $\xi \mathfrak{C}$ -space and at the same time a $\xi \mathfrak{P}$ -space. Also we prove that a Sasakian manifold is locally φ -symmetric if and only if it is a \mathfrak{DC} -space and at the same time a $\mathfrak{D}\mathfrak{P}$ -space. In section 5, we show that the tangent sphere bundle of a 2-dimensional Riemannian manifold is a ξ ^B-space if and only if the base manifold is flat or of constant curvature 1. Furthermore, we give some examples of almost contact metric \mathfrak{DC} -spaces and \mathfrak{DP} -spaces. In section 6, we consider real hypersurfaces of a complex projective space CP^n with Fubini-Study metric and determine ξ ³-hypersurfaces of CP^n . We also show that a homogeneous real hypersurface of CP^n is a $\xi \mathfrak{C}$ -space, and moreover, we give

Received May 31, 1993. Revised September 3, 1993.

^{*)} Partially supported by TGRC-KOSEF-