ON THE COMPLETE RELATIVE HOMOLOGY AND COHOMOLOGY OF FROBENIUS EXTENSIONS

By

Takeshi Nozawa

Introduction.

Let G be a finite group, K a subgroup of G and M a left G-module. Then for $r \in \mathbb{Z}$ the complete relative homology group $H_r(G, K, M)$ and cohomology group $H^r(G, K, M)$ are defined in [6]. Let 1 be the unit element of G. For the case of $K=\{1\}$ $H_r(G, K, M)\cong H^{-r-1}(G, K, M)$ holds. But it is not true that for any G, K, M and r there exists an isomorphism from $H_r(G, K, M)$ into $H^{-r-1}(G, K, M)$. In fact, in [6, p. 262] there are G, K and M such that $H_r(G, K, M)\cong \mathbb{Z}/2\mathbb{Z}$ and $H^r(G, K, M)=0$ for all $r\in\mathbb{Z}$. And if we set $M=\mathbb{Q}/\mathbb{Z}$ in [6, p. 262], $H_r(G, K, M)=0$ and $H^r(G, K, M)\cong \mathbb{Z}/2\mathbb{Z}$ hold for all $r\in\mathbb{Z}$.

Let Λ be an algebra over a commutative ring K and Γ a subalgebra such that the ring extension Λ/Γ is a Frobenius extension. In section 1 we shall introduce the complete relative cohomology group $H^r(\Lambda, \Gamma, -)$ and homology group $H_r(\Lambda, \Gamma, -)$ for $r \in \mathbb{Z}$. When the ring extension Γ/K is also a Frobenius extension, We can define a K-homomorphism $\Psi^r_{\Lambda/\Gamma}: H_r(\Lambda, \Gamma, (-)^{\Lambda}) \to$ $H^{-r-1}(\Lambda, \Gamma, -)$ for $r \in \mathbb{Z}$, where Δ is the Nakayama automorphism. The main purpose of this paper is to show necessary and sufficient conditions on which $\Psi^r_{\Lambda/\Gamma}$ is an isomorphism. Theorems 6.3, 7.1 and 7.2 provide the necessary and sufficient conditions. In section 8 we apply our results to extensions defined by a finite group G and a subgroup K. In generalization of the well-known duality for Tate cohomology we show that $H_r(G, K, -)\cong H^{-r-1}(G, K, -)$ if and only if K is a Hall subgroup of G.

1. Complete relative homology.

Throughout this paper, let Λ be an algebra over a commutative ring K and Γ a subalgebra such that the ring extension Λ/Γ is a (projective) Frobenius extension in the sense of [9]. Since Λ/Γ is a Frobenius extension, there exist elements $R_1, \dots, R_n, L_1, \dots, L_n$ in Λ and a $\Gamma-\Gamma$ -homomorphism $H \in \text{Hom}(\Gamma \Lambda_{\Gamma}, \mathbb{R})$ Received March 8, 1993. Revised February 15, 1994.