ON THE COMPLETE RELATIVE COHOMOLOGY OF FROBENIUS EXTENSIONS

By

Takeshi Nozawa

Introduction.

Let Λ be an algebra over a commutative ring K and Γ a subalgebra. Suppose that the extension A/Γ is a Frobenius extension. Then in [3, section 3], the complete relative cohomology group $H^r_{(A, \Gamma)}(M, -)$ is introduced for an arbitrary left Λ -module M and $r \in \mathbb{Z}$. We denote the opposite rings of Λ and Γ by Λ^{o} and Γ^{o} respectively. Put $P = \Lambda \otimes_{\kappa} \Lambda^{o}$ and let S denote the natural image of $\Gamma \otimes_K \Gamma^{\circ}$ in P. Then the extension P/S is also a Frobenius extension. Since Λ is a left P-module with the natural way, we have $H^r_{(P,S)}(\Lambda,-)$. We will denote this $H^r_{(P,S)}(\Lambda, -)$ by $H^r(\Lambda, \Gamma, -)$ for [6, section 3]. In this paper, we will study this complete relative cohomology $H(\Lambda, \Gamma, -)$. In section 1, we will study relative complete resolutions of Λ and in section 2, we will introduce the dual of the fundamental exact sequence of [4, Proposition 1 and Theorem 1] for complete relative cohomology groups. In section 3, we will study an internal product like as in [9, section 2] which we will call the cup product. If the basic ring of the Frobenius extension is commutative, the cup product in this paper coincides with the product \vee in [2, Exercise 2 of Chapter XI] for dimension>0.

1. Relative complete resolutions.

Let P be a ring and S a subring such that the extension P/S is a Frobenius extension. In [3], the complete (P, S)-resolution of a left P-module M is introduced. It is a (P, S)-exact sequence $\cdots \to X_1 \overset{d_1}{\to} X_0 \overset{d_0}{\to} X_{-1} \overset{d_{-1}}{\longrightarrow} \cdots$ such that X_n is (P, S)-projective for all $n \in \mathbb{Z}$ and there exist a P-epimorphism $\varepsilon \colon X_0 \to M$ and a P-monomorphism $\eta \colon M \to X_{-1}$ which satisfy $\eta \circ \varepsilon = d_0$, that is, the complete (P, S)-resolution of M is an exact sequence which consists of a (P, S)-projective resolution and a (P, S)-injective resolution of M since (P, S)-projectivity is equivalent to (P, S)-injectivity. Note that any two complete (P, S)-resolutions

Received November 8, 1991, Revised June 9, 1992.