WEAKLY NORMAL FILTERS AND LARGE CARDLINALS

By

Yoshihiro ABE

0. Introduction.

In this paper, κ denotes an uncountable regular cardinal and λ a cardinal $\geq \kappa$. For any such pair, $P_{\kappa}\lambda$ is the set $\{x \subset \lambda : |x| < \kappa\}$.

An "ideal on $P_{\kappa}\lambda$ " is always a "proper, nonprincipal, κ -complete, fine ideal on $P_{\kappa}\lambda$ " unless specified. (An ideal I is fine if for all $\alpha < \lambda$, $\{x \in P_{\kappa}\lambda : \alpha \notin x\} \in I$.) For any ideal I, $I^{+}=P(P_{\kappa}\lambda)-I$ and I^{*} is the filter dual to I.

DEFINITON. An ideal I as well as I^* are said to be *weakly normal* iff for every regressive function $f: P_{\kappa} \lambda \rightarrow \lambda$,

$$(\exists \gamma < \lambda)(\{x \in P_{\kappa}\lambda : f(x) < \gamma\} \in I^*).$$

The above definition is a translation of Kanamori's "weak normality" for filters on κ in [5]. There is another weak normality presented by Mignone [10]. It is known that our notion is Mignone's weak normality plus some saturation property and every $cf\lambda$ -saturated normal ideal on $P_{\kappa}\lambda$ has our weak normality.

 κ is said to be λ -compact if there is a fine ultrafilter on $P_{\kappa}\lambda$. If κ is λ compact, $P_{\kappa}\lambda$ carries many fine ultrafilters. Moreover every fine ultrafilter has
a weakly normal fine ultrafilter which is Rudin-Keisler ordering below it. So,
it may be a natural question whether κ is large if a weakly normal filter on $P_{\kappa}\lambda$ exists.

In §1, we consider a case where one can say κ is large.

Kunen-Paris [7] and Kunen [6] consider the possibility of $S(\kappa, \eta)$ holding for various κ, η where

 $S(\kappa, \eta) \equiv$ There is a κ -complete η -saturated ideal on κ . §2 is devoted to an application of their methods to weakly normal ideals on $P_{\kappa}\lambda$.

Much of our notation is standard, and Jech [4] or [7] should be consulted.

§ 1. κ may be strong compact.

For a reader's convenience, we give a proof of a lemma which appears Received October 21, 1991, Revised February 17, 1992.

This recearch was partially supported by Grant-in-Aid for Scientific Research (No. 01302006), Ministry of Education, Science and Culure.