A COMBINATORIAL PROOF FOR ARTIN'S PRESENTATION OF THE BRAID GROUP B_n AND SOME CYCLIC ANALOGUE

By

Jun MORITA

1. Artin's presentation.

For each $n \ge 1$, let S_n be the symmetric group on n letters $\{1, 2, \dots, n\}$, and B_n the geometric braid group with n strings.

There is a natural homomorphism, called χ_n , of B_n onto S_n . As usual, S_{n-1} and B_{n-1} are regarded as subgroups of S_n and B_n respectively, and then the restriction of χ_n to B_{n-1} coinsides with χ_{n-1} . Put $B_n^0 = \chi_n^{-1}(S_{n-1})$. Then B_{n-1} is a subgroup of B_n^0 .

Let \widetilde{B}_n be the group presented by the generators:

$$\sigma_1, \sigma_2, \cdots, \sigma_{n-1}$$

and the defining relations:

$$\left\{ \begin{array}{ll} \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{if } |i-j| = 1 \, ; \\ \\ \sigma_i \sigma_j = \sigma_j \sigma_i & \text{if } |i-j| \neq 0, \, 1 \, . \end{array} \right.$$

Put

$$au_i = \sigma_{n-1}^{-1} \cdots \sigma_{i+1}^{-1} \sigma_i^2 \sigma_{i+1} \cdots \sigma_{n-1}$$
 for $1 \le i \le n-2$, $\sigma_{n-1} = \sigma_{n-1}^2$.

Let \widetilde{B}_n^0 be the subgroup of \widetilde{B}_n generated by $\sigma_1, \dots, \sigma_{n-2}, \tau_1, \dots, \tau_{n-1}$. Then there is a natural homomorphism of \widetilde{B}_{n-1} into \widetilde{B}_n^0 .

Received November 12, 1991.