HYPOELLIPTICITY FOR A CLASS OF DEGENERATE ELLIPTIC OPERATORS OF SECOND ORDER

Dedicated to Professor Mutsuhide MATSUMURA on his sixtieth birthday

By

Michiharu SUZUKI

\S 1. Introduction and results.

Fedii [1] studied hypoellipticity for operators of the form $L=D_{1}^{2}+\phi(x_{1})^{2}D_{2}^{2}$ in \mathbb{R}^{2} , and proved that L is hypoelliptic in \mathbb{R}^{2} if $\phi(x_{1})\in C^{\infty}(\mathbb{R})$ and $\phi(x_{1})>0$ for $x_{1}\neq 0$. Hörmander's results in [2] can not be applicable to L when $\phi(x_{1})$ has a zero of infinite order. Compared with higher dimensional cases, the problem in \mathbb{R}^{2} becomes much simpler. So one can expect that one investigates hypoellipticity for more general operators in $\boldsymbol{R}^{2}.$ In this paper we shall give sufficient conditions of hypoellipticity for operators of the form $P(x, D)=D_{1}^{2}+$ $\alpha(x)D_{2}^{2}+\beta(x, \ D)$ in \boldsymbol{R}^{2} , where $x{=}(x_{1}, x_{2}){\in} \boldsymbol{R}^{2}, \ \alpha(x){\in}C^{\infty}(\boldsymbol{R}^{2})$ is non-negative and $\beta(x, D)$ is a properly supported classical pseudodifferential operator of order 1. In doing so, we need general criteria for hypoellipticity, which are improvements of ones obtained by Morimoto [5] (see Theorem 1.1 below).

Let us define the usual symbol classes $S_{1,\,0}^{m, \, \text{loc}}$ and $S_{1,\,0}^{m}$. We say that a symbol $p(x, \xi)$ belongs to $S_{1,\,0}^{m}$ or (resp. $S_{1,\,0}^{m}$) if $p(x, \xi)\in C^{\infty}(T^{*}R^{n})$ and if for any compact subset K of \mathbb{R}^{n} and for any multi-indices α and β (resp. for any multi-indices α and β there is $C_{\alpha,\beta}\equiv C_{K,\alpha,\beta}>0$ (resp. $C_{\alpha,\beta}>0$) such that $|p_{(\beta)}^{(\alpha)}(x, \xi)|\leq C_{\alpha,\beta}\langle\xi\rangle^{m-|\alpha|}$ for $x\in K$ and $\xi\in \mathbb{R}^{n}$ (resp. for $(x, \xi)\in T^{*}\mathbb{R}^{n}$), where $m\in \mathbf{R}, p_{(\emptyset)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha}D_{x}^{\beta}p(x, \xi), D_{x}=-i\partial_{x}, \langle\xi\rangle=(1+|\xi|^{2})^{1/2}$ and $T^{*}R^{n}$ is identified with $\mathbf{R}^{n}\times \mathbf{R}^{n}$. We denote by $L_{1,0}^{m}$ the set of the pseudodifferential operators whose symbols belong to $S_{1,\,0}^{m,1oc}$. Let $P(x, D) \in L_{1,\,0}^{m}$ be a properly supported pseudodifferential operator, and let $z^{0}{=}(x^{0}, \xi^{0}){\in}T^{*}R^{n}\times 0$ (\cong $R^{n}\times$ ($R^{n}\times\{0\})$). It is said that $P(x, D)$ is microhypoelliptic at z^{0} if there is a conic neighbourhood ∞ of z^{0} in $T^{*}R^{n}\setminus 0$ such that $WF(u)\cap \subset V=WF(Pu)\cap \subset V$ if $u\in \mathcal{D}^{\prime}, (R^{n})$. We also say that $P(x, D)$ is microhypoelliptic in a conic in a conic set $\mathcal{V}(\subset T^{*}R^{n}\setminus 0)$ (resp. in $\Omega(\subset \mathbb{R}^{n})$ if $P(x, D)$ is microhypoelliptic at each $(x, \xi)\in \mathcal{W}$ (resp. at

Received January, 21, 1991. Revised October 7, 1991.