HYPOELLIPTICITY FOR A CLASS OF DEGENERATE ELLIPTIC OPERATORS OF SECOND ORDER

Dedicated to Professor Mutsuhide MATSUMURA on his sixtieth birthday

By

Michiharu Suzuki

§1. Introduction and results.

Fedii [1] studied hypoellipticity for operators of the form $L=D_1^2+\phi(x_1)^2D_2^2$ in \mathbb{R}^2 , and proved that L is hypoelliptic in \mathbb{R}^2 if $\phi(x_1) \in C^{\infty}(\mathbb{R})$ and $\phi(x_1) > 0$ for $x_1 \neq 0$. Hörmander's results in [2] can not be applicable to L when $\phi(x_1)$ has a zero of infinite order. Compared with higher dimensional cases, the problem in \mathbb{R}^2 becomes much simpler. So one can expect that one investigates hypoellipticity for more general operators in \mathbb{R}^2 . In this paper we shall give sufficient conditions of hypoellipticity for operators of the form $P(x, D)=D_1^2+\alpha(x)D_2^2+\beta(x, D)$ in \mathbb{R}^2 , where $x=(x_1, x_2)\in\mathbb{R}^2$, $\alpha(x)\in C^{\infty}(\mathbb{R}^2)$ is non-negative and $\beta(x, D)$ is a properly supported classical pseudodifferential operator of order 1. In doing so, we need general criteria for hypoellipticity, which are improvements of ones obtained by Morimoto [5] (see Theorem 1.1 below).

Let us define the usual symbol classes $S_{1,0}^{m,loc}$ and $S_{1,0}^{m}$. We say that a symbol $p(x, \xi)$ belongs to $S_{1,0}^{m,loc}$ (resp. $S_{1,0}^{m}$) if $p(x, \xi) \in C^{\infty}(T^* \mathbb{R}^n)$ and if for any compact subset K of \mathbb{R}^n and for any multi-indices α and β (resp. for any multi-indices α and β there is $C_{\alpha,\beta} \equiv C_{K,\alpha,\beta} > 0$ (resp. $C_{\alpha,\beta} > 0$) such that $|p_{\beta}^{(\alpha)}(x,\xi)| \leq C_{\alpha,\beta} \langle \xi \rangle^{m-1\alpha_1}$ for $x \in K$ and $\xi \in \mathbb{R}^n$ (resp. for $(x,\xi) \in T^* \mathbb{R}^n$), where $m \in \mathbb{R}, p_{\beta}^{(\alpha)}(x,\xi) = \partial_{\xi}^{\alpha} D_x^{\beta} p(x,\xi), D_x = -i\partial_x, \langle \xi \rangle = (1+|\xi|^2)^{1/2}$ and $T^* \mathbb{R}^n$ is identified with $\mathbb{R}^n \times \mathbb{R}^n$. We denote by $L_{1,0}^m$ the set of the pseudodifferential operators whose symbols belong to $S_{1,0}^{n,loc}$. Let $P(x,D) \in L_{1,0}^m$ be a properly supported pseudodifferential operator, and let $z^0 = (x^0, \xi^0) \in T^* \mathbb{R}^n \setminus 0$ ($\cong \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$). It is said that P(x, D) is microhypoelliptic at z^0 if there is a conic neighbourhood CV of z^0 in $T^* \mathbb{R}^n \setminus 0$ such that $WF(u) \cap CV = WF(Pu) \cap CV$ if $u \in D', (\mathbb{R}^n)$. We also say that P(x, D) is microhypoelliptic in a conic in a conic set $CV(\subset T^* \mathbb{R}^n \setminus 0)$ (resp. in $\Omega(\subset \mathbb{R}^n)$ if P(x, D) is microhypoelliptic at each $(x, \xi) \in W$ (resp. at

Received January, 21, 1991. Revised October 7, 1991.