ON THE ANTI-SELF-DUALITY OF THE YANG-MILLS CONNECTION OVER HIGHER DIMENSIONAL KAEHLERIAN MANIFOLD

By

Young Jin SUH

1. Introduction.

Let M be a Kaehler manifold of complex dimension $n \ge 2$, with a Kaehler form Φ , where Φ is locally expressed by $\Phi = \sqrt{-1} \sum g_{\alpha\bar{\beta}} dz^{\alpha} \wedge d\bar{z}^{\beta}$ and a Kaehler metric $g = \sum g_{\alpha\bar{\beta}} dz^{\alpha} \otimes d\bar{z}^{\beta}$. A connection A on a principal fibre bundle P over M with the structure group G is said to be Yang-Mills when it gives a critical point of the Yang-Mills functional. It satisfies the Yang-Mills equation $d_A*F_A=0$ for the curvature F_A . Thus with the Bianchi identity $d_AF_A=0$ Yang-Mills connection is a connection whose curvature is harmonic with respect to the covariant derivative d_A .

When M has complex dimension 2, i.e., Kaehler surface, the Hodge \ast operator determines a decomposition

$$\Lambda^2 T * M = \Lambda^2 \oplus \Lambda^2$$

of the space of 2-forms, where Λ_{\pm}^2 denotes the eigenspace subbundle of * of eigenvalue ± 1 . Thus $*^2 = id$ implies that the adjoint bundle $\mathfrak{g}_P = P \times_{Ad} \mathfrak{g}$ valued 2-form $F_A = dA + (1/2)[A \wedge A]$ splits into $F^+ = (1/2)(F_A + *F_A)$ and $F^- = (1/2)(F_A - *F_A)$, which are called the self-dual part and the anti-self-dual part of F_A respectively, where \mathfrak{g} denotes the Lie algebra of G. Thus a connection A on a principal fibre bundle P over a Kaehler surface M being Yang-Mills is equivalent to $d_AF^+=0$ or $d_AF^-=0$.

But for a higher dimensional Kaehler manifold these formulae give us no meaning. Thus instead of using Hodge * operator let us introduce another operator #, which is defined in section 2 such as $\#=*^{-1} \cdot L^{(n-2)}/(n-2)!$, where L means the multiplication by Φ . Then a connection A on a principal fibre bundle P over higher dimensional Kaehler manifold M being Yang-Mills is equivalent to $d_A\#F_A=0$ (cf. Proposition 3.1 (ii)).

Also let us define an operator $\tilde{\#}$ such that $\tilde{\#}$ is equal to # on $F^{2.0}+F^{0.2}+$ Received June 6, 1989. Revised January 26, 1990.