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NOTES ON $M$-SEMIGROUPS

By

K\^ojir\^o SAT\^O

Introduction.

Let $S$ be a torsion-free cancellative commutative (additive) semigroup $\supsetneqq\{0\}$ .
Let $G$ be the quotient group of $S$ . We assume $G\neq S$ . For each subset $A$ of
$G$ , we set $A^{-1}=\{x\in G:x+A\subset S\}$ and $(A^{-1})^{-1}=A^{v}$ . If $A^{v}=A$ for an ideal $A$ of
$S$ , then $A$ is called a v-ideal of $S$ . If $S$ satisfies the ascending chain condition
for v-ideals, then $S$ is called a Mori-semigroup. If $S$ is a Mori-semigroup and
and if each ideal of $S$ generated by two elements is a v-ideal, then $S$ is called
an M-semigroup ([2]). If each ideal of $S$ is a v-ideal, then $S$ is called a
reflexive semigroup. The maximal number $n$ such that there exists a chain
$P_{1}\supseteqq P_{2}\supseteqq\cdots\supsetneqq P_{n}$ of prime ideals of $S$ is denoted by $\dim S$ . If $\dim S\geqq 1$ , then $S$ has
a unique maximal ideal.

In this paper we study a semigroup version of a result ([1, Th\’eor\‘eme 3])

of Querre. Our result is the following.

MAIN THEOREM. Let $S$ be a Mori-semigroup. Then the following conditions
are equivalent:

(1) $\dim S=1$ and $M^{-1}$ is generated by two elements for the maximal ideal $M$

of $S$ .
(2) $S$ is a reflexive semigroup.
(3) Each ideal of $S$ generated by two elements is a v-ideal.

In [4] it is shown that the conditions (2) and (3) are equivalent and (2)

implies (1). Therefore it is sufficient for us to show that (1) implies (2).
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1. Notations and Preliminaries.

Let $Z$ be the set of integers and let $N$ be the set of natural numbers. If
for $v\in M$ and $u\in S$ , there exists $n\in N$ such that $nv\in(u),$ $S$ is called a weakly

Received June 13, 1989. Revised October 6, 1989. Revised December 14, 1989.


