THE HOCHSCHILD COCYCLE CORRESPONDING TO A LONG EXACT SEQUENCE

Dedicated to Hiroyuki Tachikawa on his 60th birthday

By

Vlastimil DLAB and Claus Michael RINGEL

1. Let k be a field, and A an associative k-algebra with 1. Let M, N be right A-modules. We denote by H the Hochschild cohomology of A. It is well-known that there is a natural isomorphism

$$\eta_{MN}: \operatorname{Ext}_{A}^{t}(M, N) \longrightarrow H^{t}(A, \operatorname{Hom}_{k}(M, N))$$

see Cartan-Eilenberg [CE], Corollary IX. 4.4. For $t \ge 1$, the elements of $\operatorname{Ext}_A^t(M, N)$ may be considered as equivalence classes of long exact sequences, see Mac Lane [M], chapter III. Let

$$E = (0 \longleftarrow M \stackrel{g_0}{\longleftarrow} Y_1 \stackrel{g_1}{\longleftarrow} Y_2 \longleftarrow \cdots \longleftarrow Y_t \stackrel{g_t}{\longleftarrow} N \longleftarrow 0)$$

be an exact sequence. We want to derive a recipe for obtaining a corresponding cocycle $A^{\otimes (t+2)} \to \operatorname{Hom}_k(M, N)$.

For $0 \le i \le t+1$, let Z_i be right A-modules, and for $0 \le i \le t$, let $\beta_i : Z_i \to Z_{i+1}$ be k-linear maps. With $\beta = (\beta_0, \dots, \beta_t)$ we associate a map

$$Q_{\beta}: A^{\otimes (t+2)} \longrightarrow \operatorname{Hom}_{k}(Z_{0}, Z_{t+1})$$

defined by

$$(a_0, \cdots, a_{t+1})\Omega_{\beta} = \bar{a}_0\beta_0\bar{a}_1\beta_1\cdots\bar{a}_t\beta_t\bar{a}_{t+1}$$
,

for $a_0, \dots, a_{t+1} \in A$, where \bar{a}_i denotes the scalar multiplication by a_i (on Z_i); note that all maps will be written on the right of the argument, thus the composition of $\beta_0: Z_0 \to Z_1$, and $\beta_1: Z_1 \to Z_2$ is denoted by $\beta_0 \beta_1$.

Given the exact sequence E exhibited above, it clearly splits as a sequence of k-spaces, thus there are k-linear maps

$$M \xrightarrow{\gamma_0} Y_1 \xrightarrow{\gamma_1} Y_2 \longrightarrow \cdots \longrightarrow Y_t \xrightarrow{\gamma_t} N$$

such that

$$\gamma_{i-1}\gamma_i=0$$
, $g_{i-1}\gamma_{i-1}+\gamma_ig_i=1_{Y_i}$, for $1 \le i \le t$,

Received December 4, 1989.