SMASH PRODUCTS AND COMODULES OF LINEAR MAPS

By

K.-H. ULBRICH*

Let G be a finite group and A be a G-graded algebra over a commutative ring k. Consider the G-graded right A-module $U = \bigoplus_{\sigma \in G} A(\sigma)$ where $A(\sigma) = A$ has grading shifted by σ . Năstăsescu and Rodinò [5] proved that

(1)
$$\operatorname{End}_{A-gr}(U)*G \cong \operatorname{End}_A(U)$$
, and $A \# k[G]*\cong \operatorname{End}_{A-gr}(U)$

where $\operatorname{End}_{A-gr}(U)$ denotes the algebra of graded A-endomorphisms of U, and * means crossed product, [5], Theorems 1.2 and 1.3. The proofs are given by some explicit matrix computations relying on a graded isomorphism $\operatorname{End}_A(U) \cong M_n(A)$, n = |G|, [5], Prop. 1.1. The first isomorphism of (1) has recently been generalized to

(2)
$$\operatorname{End}_{A-g_T}(U)*G \cong \operatorname{END}_A(U)$$
, [2], Thm. 3.3,

for not necessarily finite groups G. The purpose of this paper is to give Hopf algebraic versions of (1) and (2). Write H=k[G]. First note that the above crossed products are also smash products. Furthermore, a G-graded k-module is the same as an H-comodule, and the A-isomorphism

$$U \xrightarrow{\sim} H \otimes A$$
, $a(\sigma) \longmapsto \sigma^{-1} \otimes a(\sigma)$, $a(\sigma) \in A(\sigma)$,

is H-colinear where $H \otimes A$ has coaction $\alpha: H \otimes A \rightarrow H \otimes A \otimes H$ defined by

(3)
$$\alpha(h \otimes a) = \sum h_{(1)} \otimes a_{(0)} \otimes h_{(2)} a_{(1)}, \quad h \in H, \ a \in A.$$

Now let H be any Hopf algebra over k and set $U=H\otimes A$ for a right H-comodule algebra A. Let $\operatorname{End}_A^H(U)$ be the algebra of right A-linear maps $U\to U$ which are colinear with respect to (3). We shall generalize (1), for H finite over k, to

(4)
$$\operatorname{End}_{A}^{H}(U) \# H \cong \operatorname{End}_{A}(U) \text{ and } A \# H^{*} \cong \operatorname{End}_{A}^{H}(U).$$

It was pointed out in [5] that (1) implies the duality theorems of Cohen and Montgomery [4]. Correspondingly, (4) may be viewed as an improvement of the duality result for finite Hopf algebras [3], Cor. 2.7. Note that the second

^{*} Supported by a grant from JSPS. Received February 27, 1989. Revised October 4, 1989.