AN ISOMETRIC EMBEDDING OF THE COMPLEX HYPERBOLIC SPACE IN A PSEUDO-EUCLIDEAN SPACE AND ITS APPLICATION TO THE STUDY OF REAL HYPERSURFACES

By

Oscar J. GARAY and Alfonso ROMERO

0. Introduction.

In the last years, the use of an idea of A. Ros, [11], has meant an interesting progress in the study of several families of submanifolds of the complex projective space CP^n . This idea essentially consists in considering the first standard embedding of CP^n in a certain Euclidean space \mathbb{R}^N , and contemplating the submanifolds of CP^n in the light of that new embedding. The first standard embedding has parallel second fundamental form and makes CP^n to be a symmetric R-space in \mathbb{R}^N .

In particular real hypersurfaces of CP^n have been analysed under this point of view, [6], [13], and new characterizations of this important class of hypersurfaces have been obtained.

In 1986, the second author and S. Montiel, [8], made a systematic study of a certain family of real hypersurfaces of the complex hyperbolic space CH^n . In the process of classification of that family they introduced new examples without parallel in CP^n . Therefore if we could get an isometric embedding of CH^n in some Euclidean space \mathbb{R}^N provided of as good geometric properties as those of the first standard embedding of CP^n , we could try to profound in the study of real hypersurfaces in CH^n .

On the other hand fully immersed complete submanifolds of a Euclidean space with parallel second fundamental form have been totally classified by D. Ferus, [3], [4]. As a consequence his result implies that a complete irreducible (as a Riemannian manifold) submanifold which is fully immersed in an Euclidean space with parallel second fundamental form is congruent to either an hyperplane or to an irreducible symmetric R-space immersed by means of its standard embedding. Consequentely we see that there exist no an isometric immersion

Received May 17, 1989.

Partially supported by a DGICYT Grant PS87-0115-C03-02.