COALGEBRA ACTIONS ON AZUMAYA ALGEBRAS

By

Akira MASUOKA

Introduction.

The notion of measuring actions of coalgebras on an algebra unifies the notions of algebra automorphisms, of derivations and of higher derivations. In this paper we examine such actions of a k-coalgebra C on an Azumaya k-algebra A, where k is a commutative ring. In (2.4) we show a 1-1 correspondence between the set of measurings $C \rightarrow \text{End } A$ and the set of certain right C^* -submodules of $C^* \otimes A$. Using this result, we show a Noether-Skolem type theorem (3.1): For example, if k is a field, then any measuring $C \rightarrow \text{End } A$ is inner for arbitrary C and A.

Throughout the paper we fix a commutative ring k with 1. A linear map, an algebra, a coalgebra, \otimes , Hom and End mean a k-linear map, a k-algebra, a k-algebra, a k-coalgebra, \otimes_k , Hom_k and End_k, respectively. We fix an algebra A and a coalgebra C. C^* denotes Hom(C, k), the dual algebra of C [9, Prop. 1.1.1, p. 9].

1. Preliminaries.

Let Δ , ε be the structure maps of C and write

$$\Delta(c) = \sum_{(c)} c_{(1)} \otimes c_{(2)} \quad \text{for } c \in C.$$

The k-module Hom(C, A) is an algebra with the *-product [9, p. 69]. Hom(C, A)[×] denotes the group of units in Hom(C, A).

1.1. DEFINITION. A linear map $f: C \rightarrow \text{End } A$ is called a *measuring*, if $a \mapsto (c \mapsto f(c)(a))$, $A \rightarrow \text{Hom}(C, A)$ is an algebra map, or equivalently if

 $f(c)(1) = \varepsilon(c)1,$ $f(c)(ab) = \sum_{(c)} f(c_{(1)})(a)f(c_{(2)})(b)$

for $c \in C$, $a, b \in A$ [9, Def. p. 138]. We denote by Received March 2, 1989. Revised May 29, 1989.