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Introduction.

The notion of measuring actions of coalgebras on an algebra unifies the
notions of algebra automorphisms, of derivations and of higher derivations. In
this paper we examine such actions of a k-coalgebra $C$ on an Azumaya k-
algebra $A$ , where $k$ is a commutative ring. In (2.4) we show a 1-1 correspon-
dence between the set of measurings $C\rightarrow End$ $A$ and the set of certain right $C^{*_{-}}$

submodules of $C^{*}\otimes A$ . Using this result, we show a Noether-Skolem type

theorem (3.1): For example, if le is a field, then any measuring $C\rightarrow End$ $A$ is
inner for arbitrary $C$ and $A$ .

Throughout the paper we fix a commutative ring $k$ with 1. A linear map,
an algebra, a coalgebra, $\otimes,$ $Hom$ and End mean a k-linear map, a k-algebra, a
k-algebra, a k-coalgebra, $\otimes_{k},$ $Hom_{k}$ and $End_{k}$ , respectively. We fix an algebra
$A$ and a coalgebra C. $c*$ denotes $Hom(C, k)$ , the dual algebra of $C[9$ , Prop.
1.1.1, p. 9].

1. Preliminaries.

Let $\Delta,$
$\epsilon$ be the structure maps of $C$ and write

$\Delta(c)=\sum_{(c)}c_{(1)}\otimes c_{(2)}$ for $c\in C$ .

The k-module $Hom(C, A)$ is an algebra with the $*$-product [9, p. 69].

$Hom(C, A)^{x}$ denotes the group of units in $Hom(C, A)$ .

1.1. DEFINITION. A linear map $f$ : $C\rightarrow End$ $A$ is called a measuring, if $ a\mapsto$

$(c-\rangle f(c)(a)),$ $A\rightarrow Hom(C, A)$ is an algebra map, or equivalently if

$f(c)(1)=\epsilon(c)1$ ,

$f(c)(ab)=\sum_{(c)}f(c_{(1)})(a)f(c_{(2)})(b)$

for $c\in C,$ $a,$ $b\in A$ [ $9$ , Def. p. 138]. We denote by
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