HARMONIC FOLIATIONS ON A COMPLEX PROJECTIVE SPACE

Bv

Tohru Gотон

1. Introduction.

In 1970, D. Ferus [6] gave an estimation on the codimension of a totally geodesic foliation on a sphere and a complex projective space, and successively P. Dombrowski [1] improved his results. Moreover, R. Escobales classified Riemannian foliations satisfying a certain condition on a sphere and a complex projective space in a series of his papers [2], [3], [4], [5].

On the other hand, F. Kamber and Ph. Tondeur [7], [8] studied the index of harmonic foliations with bundle-like metric on a sphere from a view point of harmonic mappings.

Recently, H. Nakagawa and R. Takagi [11] showed that any harmonic foliations on a compact Riemannian manifold of non-negative constant sectional curvature is totally geodesic if the normal plane field is minimal.

In this paper we will prove

THEOREM. Let $\mathbf{P}_m(\mathbf{C})$ be a complex projective space of complex dimension m with the metric of constant holomorphic sectional curvature. If \mathfrak{F} is a harmonic foliation on $\mathbf{P}_m(\mathbf{C})$ such that the normal plane field is minimal, then \mathfrak{F} is totally geodesic.

I am grateful to professor Ryoichi Takagi for his kind guidance and constant encouragement.

2. Preliminaries.

We first establish some basic notations and formulas in the theory of foliated Riemannian manifolds. For details, see [9], [10], [11], [13].

Let (M, g) be an *n*-dimentional Riemannian manifold and \mathcal{F} a foliation with codimension q on M. Considering \mathcal{F} as an (n-q)-dimensional integrable distribution on M, we denote the orthogonal distribution of \mathcal{F} by \mathcal{F}^{\perp} , which is called the normal plane field.

Rceeived February 16, 1989. Revised May 22, 1989.