REAL HYPERSURFACES OF A COMPLEX PROJECTIVE SPACE IN TERMS OF HOLOMORPHIC DISTRIBUTION

By

Sadahiro MAEDA and Seiichi UDAGAWA

0. Introduction.

Real hypersurfaces in a complex projective space have been studied by many differential geometers (for example, see [1], [2], [3], [7], [14] and [15]). In this paper, we study real hypersurfaces in $P_n(C)$ from the point of view of holomorphic distribution, where $P_n(C)$ denotes an n-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4.

R. Takagi ([13]) showed that all homogeneous real hypersurfaces in $P_n(C)$ are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or 2. Namely, he proved the following

THEOREM A ([13]). Let M be a homogeneous real hypersurface of $P_n(C)$. Then M is locally congruent to one of the following:

- (A_1) a geodesic hypersphere (, that is, a tube over a hyperplane $P_{n-1}(C)$),
- (A₂) a tube over a totally geodesic $P_k(C)$ $(1 \le k \le n-2)$,
- (B) a tube over a complex quadric Q_{n-1} ,
- (C) a tube over $P_1(C) \times P_{(n-1)/2}(C)$ and $n(\geq 5)$ is odd,
- (D) a tube over a complex Grassmann $G_{2,5}(C)$ and n=9,
- (E) a tube over a Hermitian symmetric space SO(10)/U(5) and n=15.

On the other hand, Kimura ([4], [5]) constructed a certain class of non-homogeneous real hypersurfaces in $P_n(C)$, which are called *ruled* real hypersurfaces in $P_n(C)$.

Let M be a real hypersurface of $P_n(C)$ and denote by TM the tangent bundle of M. Set $\xi = -JN$, where J is the complex structure tensor of $P_n(C)$ and N is a local unit normal vector field of M in $P_n(C)$. Then we may write as $T_xM = T_x^0M + R\{\xi_x\}$ at any fixed point x of M, where T_x^0M is a J-invariant subspace of T_xM . Let A_2 be the second fundamental form for the subbundle

Received April 18, 1989.