REFLEXIVE MODULES AND RINGS WITH SELF-INJECTIVE DIMENSION TWO

By

Mitsuo Hoshino

Let R be a left and right noetherian ring and M a finitely generated left R-module with $\operatorname{Ext}_R^i(M,R)=0$ for $i\ge 1$. Is then M reflexive? This is a stronger version of the generalized Nakayama conjecture posed by Auslander and Reiten [2]. In this note, we ask when every finitely generated left R-module M with $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2 is reflexive. Our main aim is to show that if R is a left and right noetherian ring then inj $\dim_R R=\inf \dim_R R \le 2$ if and only if for a finitely generated left R-module M the following conditions are equivalent: (1) M is reflexive; (2) there is an exact sequence $0\to M\to P_1\to P_0$ of left R-modules with the P_i projective; and (3) $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2. We will show also that if R is a commutative noetherian ring then it is a Gorenstein ring of dimension at most two if and only if the ring of total quotients of R is a Gorenstein ring and every finitely generated R-module M with $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2 is reflexive.

In what follows, R stands for a ring with identity, and all modules are unital R-modules. We denote by ()* both the R-dual functors, and for a module M we denote by $\varepsilon_M: M \to M^{**}$ the usual evaluation map. Recall that a module M is said to be torsionless if ε_M is a monomorphism and to be reflexive if ε_M is an isomorphism. Also, a module M is said to be finitely presented if it admits an exact sequence $P_1 \to P_0 \to M \to 0$ with the P_i finitely generated and projective. Note that if R is left noetherian then every finitely generated left module is finitely presented.

1. Preliminaries

In this section, we prepare several lemmas which we need in the next section.

LEMMA 1.1. The following are equivalent:

(1) Every finitely presented left module M with $\operatorname{Ext}_R^i(M, R) = 0$ for i=1, 2Received August 8, 1988.