TILTING MODULES, DOMINANT DIMENSION AND EXACTNESS OF DUALITY FUNCTORS

By

R.R. Colby

Dedicated to Professor Hiroyuki Tachikawa for his sixtieth birthday

Let R and S be rings and let $_{R}W_{S}$ be a bimodule. We shall denote both the functors $\operatorname{Hom}_{R}(_, W)$: R-Mod \rightarrow Mod-S and $\operatorname{Hom}_{S}(_, W)$: Mod- $S \rightarrow R$ -Mod by Δ_{W} and the composition of the two, in either order, by Δ_{W}^{2} . Recall that (for fixed W) there is a natural transformation $\delta : 1_{R \cdot Mod} \rightarrow \Delta_{W}^{2}$, defined via the usual evaluation maps $\delta_{M} : M \rightarrow \Delta_{W}^{2}(M)$. An R-module M is called W-reflexive (W-torsionless) in case δ_{M} is an isomorphism (a monomorphism). Then, an R-module M is Wtorsionless if and only if it is isomorphic to a submodule of a direct product of copies of $_{R}W$. Also recall that $_{R}W_{S}$ is balanced in case $R \cong \operatorname{End}_{S}(W)$ and $S \cong$ $\operatorname{End}_{R}(W)^{op}$ canonically, and that $_{R}W_{S}$ defines a Morita Duality if it is balanced and both $_{R}W$ and W_{S} are injective cogenerators (see [1], [3] or [10], for an account of Morita Duality).

We begin by studying exactness properties of the functor Δ_W^2 . The case W=R has been extensively studied in ([4], [5], [6] and [7]) and Theorem 1, Lemma 2, Proposition 3 and Proposition 4 are generalizations of results obtained there. A finite dimensional algebra R of positive dominant dimension possesses (what we consider to be) a canonical pair of tilting left and right modules $_RU$ and V_R . Associated with these are the endomorphism rings $S=\operatorname{End}_R(U)^{op}$ and $T=\operatorname{End}_R(V)$, and the bimodule $_TW_S=_T(V\otimes_R U)_S$. We relate exactness properties of the functors Δ_U , Δ_V , Δ_W and their squares to dominant dimension. For these canonically chosen tilting modules we show that

1) if dom. dim. $R \ge 2$ then Δ_{U}^2 preserves monomorphisms both in Mod-S and in R-Mod;

2) if dom. dim. $R \ge 3$ then Δ_U^2 is left exact on Mod-S and the functors Δ_W^2 preserve monomorphisms in Mod-S and in T-Mod. In this case, if Δ_W : T-Mod \leftrightarrow Mod-S: Δ_W defines a Morita Duality, then R is QF (and conversely);

3) if dom. dim. $R \ge 4$ then the functors Δ_W^2 are left exact on both Mod-S and on T-Mod.

We shall denote the injective envelope of a module M by E(M) and, if M is an *R*-module, we denote the annihilator in M of a subset I of R by $Ann_{\mathcal{M}}(I)$. Received September 1, 1987.