A NOTE ON STRONG HOMOLOGY OF INVERSE SYSTEMS

By

Sibe Mardešić

1. Introduction.

Ju. T. Lisica and the author have defined in [4] strong homology groups $H_p(X;G)$ of inverse systems of spaces $X=(X_\lambda,\,p_{\lambda\lambda'},\,\Lambda)$ over directed cofinite sets Λ (every element $\lambda\in\Lambda$ has only finitely many predecessors). It was shown in [5] that these groups are functors on the coherent prohomotopy category CPHTop, introduced in [2] and [3]. The notion of strong or Steenrod homology $H_p^s(X;G)$ of an arbitrary space X was then defined [1], [6] and shown to be a functor on the strong shape category SSh [2], [3]. The procedure consisted in choosing a cofinite ANR-resolution $p: X \to X$ of X ([7], [8], [9]) and of defining $H_p^s(X;G)$ as $H_p(X;G)$. That the group $H_p^s(X;G)$ does not depend on the choice of the resolution is a consequence of the following factorization theorem ([3], Theorem II. 2.3). If $p: X \to X$ is a resolution and $f: X \to Y$ is a coherent map into a cofinite ANR-system, then there exists a unique coherent homotopy class of coherent maps $g: X \to Y$ such that gp and f are coherently homotopic.

The definition of composition in CPHTop and the proof of the factorization theorem essentially used the assumption that the index sets Λ be cofinite. On the other hand, the construction of the homology groups $H_p(X;G)$ did not require this assumption. Therefore, it remained unclear whether one can use also non-cofinite ANR-resolutions to determine the homology groups $H_p^s(X;G)$ of the space X. To prove that this is indeed the case is the main purpose of this paper. Such an information can prove useful in situations where a non-cofinite ANR-resolution naturally arises.

The main idea of the proof is to replace a given ANR-resolution $p: X \to X$ by a cofinite ANR-resolution $p^*: X \to X^*$ using the "trick" described in ([9], Theorem I, 1.2). What remains to be done is to exhibit a natural isomorphism $u_*: H_p(X; G) \to H_p(X^*; G)$. The correct formula for u_* is easily found. However, the formula for the inverse v_* of u_* is less obvious. Even more complicated is the verification of the two equalities $u_*v_*=1$, $v_*u_*=1$.

In order to simplify notations throughout the paper we omit the coefficient groups G, although all results hold for an arbitrary G.