ON COGENERATOR RINGS AS ϕ -TRIVIAL EXTENSIONS

Dedicated to the memory of Professor Akira Hattori

By

Kazunori SAKANO

Let R be a ring with identity and M an (R, R)-bimodule with a pairing $\Phi = [-, -]: M \otimes_R M \to R$, that is, an (R, R)-bilinear map satisfying [m, m']m'' = m[m', m]. Then by defining a multiplication on the abelian group $R \oplus M$ as $(r, m)(r', m') = (rr' + [m, m'], mr' + rm'), R \oplus M$ becomes a ring, which is called the Φ -trivial extension of R by M and is denoted by $\Lambda = R \underset{\varphi}{\ltimes} M$. Note that $\Phi = 0$ corresponds to the trivial extension $R \ltimes M$. In particular, a generalized matrix ring defined by a Morita context can be considered as a special case of a Φ -trivial extension.

The main purpose of this paper is to give a necessary and sufficient condition for Λ to be a right cogenerator ring under the condition that $\operatorname{Im} \Phi$ is nilpotent.

In Section 1, we study the form of the injective hull of a simple right Λ module and decide the condition for Λ to be a right cogenerator ring under the assumption that Im Φ is nilpotent. Furthermore, in case of the trivial extension $R \ltimes M$, we investigate the condition for M=0, when $R \ltimes M$ is a right cogenerator ring. In Section 2, we give a sufficient condition for Λ to be right self-injective under the assumption that $\operatorname{Im} \Phi$ is nilpotent. Moreover, in case of the trivial extension $R \ltimes M$, we give a necessary and sufficient condition for $R \ltimes M$ to be a right injective cogenerator ring. Let $\Gamma = \begin{pmatrix} S & 0 \\ U & T \end{pmatrix}$ be a generalized triangular matrix ring, where both S and T are rings with identity and U a In the final Section 3, we study an application of results in (T, S)-bimodule. Sections 1 and 2 to a generalized triangular matrix ring Γ . Especially, we show that Γ is a right injective cogenerator ring if and only if both S and T are right injective cogenerator rings, and U=0. This result was mentioned by T. Kato during a conversation and he pointed out whether the similar result as above holds when Γ is a right cogenerator ring (in case of Γ being a QFring, see [6, Exercise (3)-(2), p. 362]). In case of S=T in Γ , there holds that Γ is a right cogenerator ring if and only if T is a right cogenerator ring and

Received December 3, 1985; Revised March 10, 1986.