APPROXIMATIVE SHAPE I

-BASIC NOTIONS-

By

Tadashi WATANABE

§0. Introduction.

Many mathematicians discussed the classical questions of the expansions of spaces and maps into polyhedral inverse systems. For expansions of spaces Freudenthal $\lceil 9 \rceil$ showed that

(i) any compact metric space X admits a polyhedral inverse sequence \mathcal{X} whose inverse limit is X.

(i) has very important meanings. Because it gives us a method to investigate X by means of a polyhedral inverse sequence \mathcal{X} . This idea goes back to Alexandroff and Lefschetz. It is a good and fruitfull idea in topology.

Naturally we have the question: Can we use this idea for maps? Essentially this is divided in two questions (ii) and (iii) stated below: Let X and Y be compact metric spaces. Let $\mathfrak{X} = \{X_i, p_{i,j}, N\}$ and $\mathfrak{Y} = \{Y_i, q_{i,j}, N\}$ be polyhedral inverse sequences such that $\lim \mathfrak{X} = X$ and $\lim \mathfrak{Y} = Y$. Here $\lim \mathfrak{X}$ and N denote an inverse limit of \mathfrak{X} and the set of all positive integers, respectively.

(ii) For any map $f: X \rightarrow Y$, is there a system map $f: X \rightarrow Y$ for some X and Y such that $f = \lim f$?

(iii) For any \mathcal{X} , \mathcal{Y} and any map $f: X \to Y$, is there a system map $f: \mathcal{X} \to \mathcal{Y}$ such that $f = \lim f$?

When we handle maps by this idea, we encounter some troubles. By examples we consider the above questions. Let C, I and R be the Cantor discontinuum, the unit interval and the real line, respectively. There is an onto map $f: C \rightarrow I$.

First we consider question (iii). Let $C = \{C_i, p_{ij}, N\}$ and $\mathcal{J} = \{I_i, q_{ij}, N\}$ be inverse sequences such that $C = \lim C$, $I = \lim \mathcal{J}$, all C_i are finite sets, all $I_i = I$ and all q_{ij} are the identity map $1_I: I \rightarrow I$. Let $p = \{p_i: i \in N\}: C \rightarrow C$ be an inverse limit. Let all $q_i: I \rightarrow I$ be 1_I . Then $q = \{q_i: i \in N\}: I \rightarrow \mathcal{J}$ forms an inverse limit.

We assume that there is a system map $f = \{f, f_i : i \in N\} : C \rightarrow \mathcal{G}$ such that $\lim f = f$. Then $q_i f = f_i p_{f(i)}$ for each *i*. Since q_i and *f* are onto, f_i must be <u>Received February 4, 1986</u>