H-SEPARABILITY OF GROUP RINGS (In memory of Professor Akira Hattori)

By

Kazuhiko HIRATA

Let k[G] be the group ring of a finite group G with a coefficient field k. Assume that the characteristic of k does not divide the order of G. Let H be a subgroup of G, Δ the centralizer of k[H] in k[G] and D the double centralizer of k[H] in k[G]. The purpose of this paper is to prove that k[G] is an H-separable extension of D. For this, a unit in the center C of k[G] plays a fundamental role (Lemma 1). Besides, we can prove the well known facts that k[G] is (finitely generated) projective over C and k[G] is a central separable algebra over C, explicitly, by use of this unit.

Denote by g_x and c_x the number and the sum of elements in the conjugate class of G containing the element x of G, respectively.

LEMMA 1. $u = \sum_{c_x} (1/g_x) c_x c_{x^{-1}}$ is a unit in C.

PROOF. We first prove that $\{(1/g_x)c_x\}$ and $\{c_{x^{-1}}\}$ form a dual base of C over k. Let $c_yc_x = \sum_{c_x} c_z a_{zx}$ where a_{zx} are integers. This means that each z_k $(1 \le k \le g_z)$ conjugated to z, appears in c_yc_x a_{zx} times, that is, for fixed k, the number of pairs (i, j) such that $y_ix_j = z_k (1 \le i \le g_y, 1 \le j \le g_x)$ is equal to a_{zx} . So, the number of terms $x_j^{-1} = z_k^{-1}y_i(1 \le j \le g_x)$ is $a_{zx}g_z$ in $c_{z^{-1}}c_y$ and $c_{z^{-1}}c_y = \cdots + (a_{zx}g_z/g_x)c_{x^{-1}} + \cdots$. This proves that $((1/g_z)c_{z^{-1}})c_y = \sum c_{x^{-1}}a_{zx}$ $((1/g_x)c_{x^{-1}})$ or equivalently $\{(1/g_x)c_x\}$ and $\{c_{x^{-1}}\}$ form a dual base of C over k. Now C is a separable k-algebra in the sense of that, for any field extension L of k, C_L is a semisimple L-algebra. Then $u = \sum_{c_x} (1/g_x)c_xc_{x^{-1}}$ is a unit in C by Theorem 71. 6 in [2] p.482.

Let v be the inverse of u in C, uv=1.

COROLLARY 2. $\Sigma_{c_x}(1/g_x)c_x \otimes c_{x^{-1}}v$ is a separability idempotent in $C \otimes_k C$.

PROOF. It is clear that $c (\Sigma(1/g_x)c_x \otimes c_{x^{-1}}v) = (\Sigma(1/g_x)c_x \otimes c_{x^{-1}}v)c$ for any $c \in C$ and $\Sigma(1/g_x)c_xc_{x^{-1}}v = 1$.

Let p be the map of k[G] to C defined by $p(a) = (1/n) \sum_{x \in G} xax^{-1}$ for $a \in k[G]$, where n is the order of G. The map p is the projection of k[G] to C. Then p is an element of Hom_C(k[G], C) which has a left k[G]-module structure in the usual way.

Received February 8, 1986.