A CLASSIFICATION OF ORTHOGONAL TRANSFORMATION GROUPS OF LOW COHOMOGENEITY Dedicated to Professor Ichiro Yokota on his 60th birthday

By

Osami YASUKURA

Contents

- 1. Introduction
- 2. Preliminaries
- 3. Basic classification by cohomogeneity
- 4. Orthogonal transformation groups of cohomogeneity at most 3

1. Introduction

A Lie transformation group on a smooth manifold M is a pair (G, M) of a Lie group G which acts smoothly on M. This paper is concerned with the cohomogeneity (abbrev. coh) of (G, M), which is defined by

 $\operatorname{coh}(G, M) = \dim M - \dim G + \min \{\dim G_x; x \in M\},\$

where G_x is the isotropy subgroup of G at x. Then

 $\operatorname{coh}(G, M) \ge \dim M - \dim G (=: \operatorname{doh}(G, M)),$

 $\{x \in M; \text{ coh } (G, M) = \text{doh } (G, M) + \dim G_x\}$ is an open subset of M, and

 $\cosh(G^{\circ}, M) = \cosh(G, M)$

where G° is the identity connected component of G.

An orthogonal transformation group (abbrev. o.t.g.) on an N dimensional Euclidean space \mathbf{E}^N is defined as a pair (G, \mathbf{E}^N) of a connected Lie subgroup G of the full orthogonal group O(N) on \mathbf{E}^N . (G, \mathbf{E}^N) is said to be contained in another o.t.g. (G', \mathbf{E}^N) on \mathbf{E}^N if there is a real linear isometry $\iota: \mathbf{E}^N \to \mathbf{E}^N$ and a Lie group monomorshism $\tau: G \to G'$ such that

$$\tau(g)\iota = \iota g \text{ for all } g \in G.$$

If moreover τ is a Lie group isomorphism, (G, \mathbf{E}^N) is said to be *equivalent* to (G', \mathbf{E}^N) .

Let ρ be a linear representation on \mathbb{R}^N over the field \mathbb{R} of all real numbers of a Lie group G. We say (G, ρ, \mathbb{R}^N) an orthogonal linear triple and ρ an orthogonal representation of G if there is a positive definite inner product on \mathbb{R}^N which is invariant under the action of

Received December 10, 1985.