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1. Introduction

A Lie transformation group on a smooth manifold $M$ is a pair $(G, M)$ of a Lie group $G$

which acts smoothly on $M$. This paper is concemed with the cohomogeneity (abbrev. $coh$) of
$(G, M)$ , which is defined by

coh $(G, M)=\dim M-\dim G+\min\{\dim G_{x};x\in M$ ,

where $G_{x}$ is the isotropy subgroup of $G$ at $x$ . Then

coh $(G, M)\geqq\dim M-\dim G(=:doh(G, M))$ ,

{$x\in M$; coh $(G,$ $M)=doh(G,$ $M)+\dim G_{x}$} is an open subset of $M$, and

coh $(G^{0}, M)=coh(G, M)$

where $G^{0}$ is the identity connected component of $G$ .
An orthogonal transformation group (abbrev. $0.t.g$ ) on an $N$ dimensional Euclidean

space $E^{N}$ is defined as a pair $(G, E^{N})$ of a connected Lie subgroup $G$ of the full orthogonal
group $O(N)$ on $E^{N}$. $(G, E^{N})$ is said to be contained in another o.t. $g$ . $(G^{\prime}, E^{N})$ on $E^{N}$ if there
is a real linear isometry $\iota:E^{N}\rightarrow E^{N}$ and a Lie group monomorshism $\tau:G\rightarrow G^{\prime}$ such that

$\tau(g)\iota=\iota g$ for all $g\in G$ .

If moreover $\tau$ is a Lie group isomorphism, $(G, E^{N})$ is said to be equivalent to $(G^{\prime}, E^{N})$ .
Let $\rho$ be a linear representation on $R^{N}$ over the field $R$ of all real numbers of a Lie

group $G$ . We say $(G, \rho, R^{N})$ an orthogonal linear triple and $\rho$ an orthogonal representation of
$G$ if there is a positive definite inner product on $R^{N}$ which is invariant under the action of
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