SOME ALMOST-HOMOGENEOUS COMPLEX STRUCTURES ON $P^2 \times P^2$

Mirella Manaresi

1. Introduction

It is well known that on $P^1(C) \times P^1(C)$ there exists an infinite sequence of different complex structures, namely the Hirzebruch surfaces Σ_{2m} , $m \in \mathbb{N}$. These surfaces are of the form $P(\mathcal{O}_{P^1}(m) \oplus \mathcal{O}_{P^1}(-m))$ and are all almost-homogeneous (see [H]). In generalization of this, Brieskorn has studied P^n -bundles over P^1 and has proved that all complex structures on $P^1 \times P^n$ satisfying some supplementary conditions (see [Br], (5.3)) are such P^n -bundles. All these structures are almost-homogeneous.

Motivated by these results, it is natural to consider complex structures on $P^2 \times P^2$ of the form P(E), where E is a topologically trivial holomorphic vector bundle of rank 3 on P^2 . In contrast with the situation on P^1 , a complete classification of such bundles is not known, however Bănică has classified all topologically trivial rank 2 vector bundles on P^2 (see [B], §2). In particular these bundles do not depend only on discrete parameters, but also on "continuous" moduli. Using rank 3 vector bundles on P^2 of the form $E := F \oplus \mathcal{O}_{P^2}$, with F topologically trivial of rank 2, one can easily construct complex structures on $P^2 \times P^2$, depending on "continuous" moduli, which are not almost-homogeneous.

Here we study some examples of almost-homogeneous complex structures on $P^2 \times P^2$ of the form P(E), for homogeneous and almost-homogeneous E. In §2 are studied the cases when E is $\mathcal{T}_{P^2}(-1) \oplus \mathcal{O}_{P^2}(-1)$ or its dual (together with $\mathcal{O}_{P^2}^{\oplus 3}$, these are the only topologically trivial homogeneous rank 3 vector bundles on P^2 , see for example [M]). It turns out that the automorphism group of $X_1 := P(\mathcal{T}_{P^2}(-1) \oplus \mathcal{O}_{P^2}(-1))$ has an open orbit, whose complement is an irreducible homogeneous hypersurface (hence X_1 gives an example of the manifolds classified by Ahiezer [Ah]), while the automorphism group of $X_2 := P(\mathcal{T}_{P^2}(-2) \oplus \mathcal{O}_{P^2}(1))$ has an open orbit, whose complement is irreducible and homogeneous of codimension 2. In §3 we consider the complex manifold $X := P(F \oplus \mathcal{O}_{P^2})$ with F a topologically trivial rank 2 vector bundle on P^2 of generic splitting type (-1, 1) and we prove that the automorphism group of X has an open orbit, whose complement is an irreducible hypersurface, which contains a whole fiber of P(E).

This paper was written with the financial support of M.P.I. (Italian Ministry of Education). The author is a member of G.N.S.A.G.A. of the C.N.R. Received September 2, 1985.