A SEQUENCE ASSOCIATED WITH THE ZEROS OF THE RIEMANN ZETA FUNCTION

By

Yasushi Matsuoka

Let $\zeta(s)$ be the Riemann zeta function, let C_n denote the generalized Euler constants associated with $\zeta(s)$, i. e.,

$$C_n = \lim_{N \to \infty} \left\{ \sum_{k=1}^N \log^n k / k - \log^{n+1} N / (n+1) \right\},$$

and define the numbers $\delta_n(n \ge 1)$ by

$$\delta_1 = 1 + \frac{1}{2} C_0 - \frac{1}{2} \log \pi - \log 2$$

and, for $n \ge 2$,

(1)
$$\delta_n = 1 - (1 - 2^{-n})\zeta(n) + n \sum_{h=1}^n \frac{1}{h_{j_1 + \dots + j_h = n - h}} \sum_{b=1}^h \frac{C_{j_b}}{j_b!}.$$

Then we have, for $n \ge 1$,

$$\delta_n = \sum_{\alpha} \rho^{-n},$$

where the sum Σ_{ρ} is taken over all complex zeros ρ of $\zeta(s)$ (see [2]).

In this paper we shall study the sequence $\{\delta_n\}$ and prove four theorems. In Theorem 1 we shall give an expression of δ_n , and, using it, we shall derive, in Theorem 2, a necessary and sufficient condition for the truth of the Riemann hypothesis. The expression of δ_n will be specified in Theorem 3 under the Riemann hypothesis, and in the final Theorem 4, we shall give an upper bound for the quantity $|\delta_n|$.

We start with the following lemma.

LEMMA. Let m be a positive integer, let $a_j(j=1, 2, \dots, m)$ be real numbers, and let $b_j(j=1, 2, \dots, m)$ be mutually distinct positive numbers $\leq \pi$. If

$$\sum_{j=1}^m a_j \cos b_j n \longrightarrow 0,$$